
1Linux Thane 2006

2 Linux Thane 2006

3Linux Thane 2006

4 Linux Thane 2006

5Linux Thane 2006

6 Linux Thane 2006

7Linux Thane 2006

8 Linux Thane 2006

9Linux Thane 2006

10 Linux Thane 2006

11Linux Thane 2006

12 Linux Thane 2006

13Linux Thane 2006

14 Linux Thane 2006

15Linux Thane 2006

16 Linux Thane 2006

17Linux Thane 2006

18 Linux Thane 2006

19Linux Thane 2006

20 Linux Thane 2006

21Linux Thane 2006

22 Linux Thane 2006

23Linux Thane 2006

Migrating IndiX from Xfree86 to Xorg
Siji Sunny, Soumen Debgupta and Amit Pundir

Language Computing Group, CDAC,Gulmohar Cross Road No.9, Mumbai- 4000049,India

{siji,soumen,amitp}@cdacmumbai.in

Abstract
Unix started as a CUI (Command User Interface) operating system. XWindows provided a very convenient
GUI (Graphical User Interface) so that multi- tasking could be done and desktop environments could be
created on the Unix platform.

Many Unix like systems exist. GNU/Linux is a user friendly, freely distributable, Unixlike system under
GPL which used Xfree86 as X. IndiX had modified this Xserver to enable Indic languages on GNU/
Linux. However, as there may not be further Xfree86 developments in GPL, more and more GNU/
Linux distributions are switching over to Xorg (new group formed by the developers to continue Xserver
developments under GPL). In this presentation, we will be discussing some of the issues that need to be
sorted in order to make the versatile IndiX system work with latest Xserver (Xorg), so that the newer
devices can be supported.

Introduction

The IndiX project funded by TDIL,
Government of India executed at CDAC Mumbai
had enabled 13 Indian Languages on GNU/Linux.
In IndiX project the core windowing system of the
GNU/Linux (X11 Server and Client) are enhanced
with Indic capability. The X11 Server converts
English characters to their shapes and in IndiX the
X11 Server does the same for Indian scripts.

The basic IndiX agenda is that the text
processing should be as easy for the Indian scripts
as it is for English for the user. But within the
computer, processing Indic text is not exactly the
same as that for English.

The technological challenge addressed by
IndiX is to identify the minimal, logical and required
changes in Indic text processing and embed these
changes within the lower most level of a widely used
and deployed software architecture, GNU/Linux.
Indic text processing is not a product or commodity
but modifications to the X Server. Thus IndiX project
Xfree86 was modified.

As Xfree86 group have discontinued further
developments in GPL. In order to continue GNU
Linux activities, a new group was formed by the
FOSS community called as X.org and all the
distributions of GNU Linux are changing their
XServers from Xfree86 to Xorg.

Hence, there is a need to make IndiX
technology work with Xorg.

About X

X was developed by the Athena project at MIT
and was released in 1984. In 1988 an entity called
the “X Consortium” took over X, and to this day it
handles development and distribution. It is the
standard graphical interface on Unix, Unix- like
operating systems, and is available for most other
modern operating systems.

Architecture

X is based on a client - server model. A client
application runs on a host computer and
communicates with other X servers running on

24 Linux Thane 2006

remote or local PCs. In client server architecture
application themselves are clients. X servers job is
to receive request from X client as drawing window
from point to point. X server moreover manages
different input devices (mouse, keyboard,etc.). X
client builds window with various widget sets like
button, menu, text box, etc. The communication
protocol between server and network is transparent.

A client and server may run on the same
machine or different ones, possibly with a different
platform. Practically speaking, we can run a
computation intensive task on a remote machine and
display the result on a local computer desktop.

In most graphical interfaces there is a top level
window, that is root window. The term windows is
also used to denote windows that also lay within
another window that is sub- windows of a parent
window. Elements such as buttons, menus, icons can
be realised using sub- windows. The window created
by the client creates a tree architecture, root of this
tree is the root window, which is a special window
automatically created at server startup. All others are
directly or indirectly subwindows of this root
window.

IndiX

GNU/Linux was to be localized so that most
applications can work almost as easily with Indic
scripts as with Latin. In this project IndiX, X server
was modified, so that clients can send UTF-8 encoded
text in several Indian scripts like Devanagari,
Kannada, Malayalam and Tamil.

What IndiX did in existing X architecture

IndiX identified three minimal and necessary
enhancements to the Latin text processing [Ref:2].
The basis of these enhancements is to treat the
syllable as an equivalent of a character in Latin.

1 Provide text rendering interface at the lowermost
level as provided for Latin.

2 To support text editing, provide interface to get
the extent of a syllable and maintain the syllable
boundaries and their extents dynamically.

3 Finally, provide a virtual CharMap that will map
from a syllable to the sequence of glyphs from a
font. Currently, the IndiX project has enabled 13
Indian languages using this architecture.

And we are studying the Xorg architecture to
port the IndiX- 2 architecture from Xfree86 to Xorg.

Merging from Xfree86 to Xorg

Xfree 86 is a freely- redistributable Open
Source implementation of the X Window System by
Xfree86 project - a volunteer Organization.

Xfree86 was originated in 1992 from the X386
server for IBM PC compatibles, it was included with
X11R5 in 1991, written by Thomas Roell and Mark
W. Snitily and donated to the MIT X Consortium by
Snitily Graphics Consulting Services (SGCS).

Why Xfree86 has been rejected by FOSS
community

Following were the reasons for searching an
alternative for Xfree86.

1 XFree86’s license is not GPL-compatible.

2 XFree86 has always allowed contributors and
developers to license their work in their own
names whatever manner they wish that conform
to XFree86 licensing policy. This includes
demanding credit for their work, which is
completely against GPL.

3 The new license does not apply to client- side
libraries, only the X server.

People have already contributed code to the X
server having their own copyrights. If XFree86 wants
to change its license under GPL, they must either
contact each contributor for relicensing, or they will
have to remove the code of all those who have
contributed, else they would be violating the licenses
of the individual contributors.

In May 1999, the Xfree86 team had joined
together and formed Xorg. They were working as
non- paying members, encouraged by various
hardware companies interested in using Xfree86 with
Linux. Now most of the Linux distributions have
adopted Xorg instead of XFree86.

In the longer run, they are planning to make X
modular by splitting X into a series of smaller
packages for the server, different libraries and utility
applications etc. Different Linux distributions want
such a modular release so that different parts of X
can be updated independently. Apparently, many of
these components are rapidly reaching maturity - they
are not rewrites. After all, just a split of the existing
code into pieces with a more modern build
architecture (autotools vs. imake).

Acknowledgments

25Linux Thane 2006

We would like to thank and acknowledge Mr.
Zia Saquib, Executive Director for his
encouragement, Dr. Alka Irani for her guidance and
our colleagues in Language computing Group CDAC
Mumbai for their support.

Glossary:

(1) Syllable:

Indian language text input differs from that in
English. The most significant difference of these is
that in English, each keystroke maps directly to a
letter. Each letter has a unique code. A “Syllable” -
the Indian language equivalent unit of writing letter,
however is composed of one or more characters
entered through the keyboards or any other input
mechanism. There are far too many syllables to be
encoded separately. The syllable is broken down into
vowels, consonants and modifiers. These are then
encoded, just as roman alphabets are. The user types
in a sequence of vowels, consonants, and modifiers.
The machine then composes syllables at run time
based on language dependent rules. Every syllable
is thus represented in the machine as a unique
sequence of vowels, consonants and modifiers.

(2) Unicode and UTF-8:

Developed in cooperation between the Unicode
Consortium and the International Organization for
Standardisation (ISO), Unicode is an attempt to
consolidate the alphabets and ideographs of the
world’s languages into a single, international
character set. It focuses on the characters themselves
rather than on languages. Thus, a letter shared
between English and Russian (or for that matter, an
ideograph shared between kanji and Han script)
would have the same Unicode character. As a
multilingual standard, Unicode makes it possible for
developers to create applications without having to
resort to the costly, time- consuming task of releasing
localized versions for each language.

UTF-8 is a compromise character encoding that
can be as compact as ASCII (if the file is just plain
English text) but can also contain any unicode
characters (with some increase in file size). UTF
stands for Unicode Transformation Format. The ‘8’
means it uses 8- bit blocks to represent a character.
The number of blocks needed to represent a character
varies from 1 to 4.

(3) IndiX:

Realizing the importance of enabling open
source infrastructural software like Linux to support
Indic scripts, the Ministry of Information Technology,
of the government of India funded the IndiX project
at the CDAC Mumbai (formerly NCST) in 2000.
IndiX provided the Indian Language support for the
Linux Operating System. IndiX team had modified
the X server so that the client applications can send
Unicode based text in several Indian scripts like
Devanagiri, Kannada, Malayalam and Tamil. http: /
/www.cdacmumbai.in/projects/indix/

(3) FOSS/GPL:

The GNU General Public License is intended
to guarantee your freedom to share and change free
software- - to make sure the software is free for all
its users. When we speak of free software or FOSS
(Free Open Source Software), we are referring to
freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to
distribute copies of free software (and charge for this
service if you wish). Also, that you receive source
code or get it if you want it, you can change the
software or use pieces of it in new free programs;
and that you know you can do these things.

References:

1. X window System By Robert W.Scheifler and
james Gettys

2. IndiX- Indian Language support for the Linux
Operating System By Vinod Kumar , Sandeep
Rao , Ajit Joshi , Rekha Sharma , CDAC
Mumbai. http: / /www.cdacmumbai.in/projects/
indix/

3. http:www.en.wikipedia.org

4. http: / / www.x.org

5. http: / / www.xfree86.org

26 Linux Thane 2006

Another ‘world’ is possible -
(through aanatarabhaaratii Multilingual portal)

Anal Haque Warsi1, Santosh2, Sobi3

1. Project Engineer-anal@cdacmumbai.in.
2. Project Engineer, -santoshg@cdacmumbai.in

3. Project Engineer , -sobi@cdacmumbai.in
 Language Computing Group, C-DAC Mumbai

Abstract
Most of the Computer end users-in India are familiar with only one operating system MS-windows. The
many of the end-users in India may not even be knowing that there is an alternative Operating System
platform for computers. Let us group the systems under that category as Unix and Unix-like systems.
GNU/Linux (sometimes referred to as Linux) falls in this second category. With Govt of India taking
extra efforts to spread the computer network across the whole country to provide easy accessibility to
villages, educational scene is India can change drastically if we build a good educational contents
framework. In this presentation we will be discussing how using this alternative platform called GNU/
Linux we can create and use educational contents in multiple languages.

Today we will be demonstrating one such service which can be used for storing, sharing and displaying
multi-lingual documents in open formats like html etc... It is provided through aantarabhaaratii portal by
the janabhaaratii project of CDAC Mumbai using jana-indix CD. It should be noted that all the operations
can be efficiently done form the GNU/Linux platform. Thus it is very important to create awareness
about GNU/Linux as a very effective platform.

This presentation is about an Open Source cost cutting Solutions in Education using portal
aantarabhaaratii, developed and maintained by janabhaaratii project of Language Computing
Group at C-DAC Mumbai.

Feature of our antrabhaaratii portal are:

Q A storehouse for Useful/relevant contents

Q Distributed content Maintenance and multiple
content maintenance

Q All inclusiveness: Some Segments of the
population are sometimes excluded (female, kids,
minors, physically challenged, Sr. Citizens); we
will create various user segments on the portal

Q Easy content development in multiple Indic
languages

A brief description of aantarabhaaratii portal:

Objectives of the Portal

The portal is meant for a collaboration effort
for contents in Indian Languages, initially covering
6 languages but eventually providing for all Indian
Languages. The initial 6 languages are: Hindi,
Marathi, Bengali, Oriya, Telugu and Malayalam. It
is developed using Plone. Plone is a user-friendly
powerful content managementsystem - ideal as an
intranet and extranet server, as a document publishing

system, a portal server and as a groupware tool for
collaboration between separately located entities.
Plone is built on top of the Python application server
Zope and its accompanying Zope Content
Management Framework.

Basic Features

The portal will contain the following features
common to all its users:

1. Eventually, it will be developed across all the
Languages of India and in all the major scripts

2. Language-wise: Currently the portal is enabled
for 13 Indian languages. Gradually all the official
languages will be included.

3. Dialect wise: Within each language, various
dialects and regional interests will be represented
with specific literature/articles of interests/
contributions.

4. Bulletin Boards: The portal will have notice
boards called Bulletin boards on various issues

5. Weblogs / WIKI : The portal will have on-line

27Linux Thane 2006

encyclopedia

6. Contents : Portal will have useful Corpa/e-books
documents in multiple languages

Distributed authority structure for maintaining/
developing the Portal

Various kinds of users may be identified and
these can be broadly classified as internal/external
or developers/general layman or based on languages.
All of the users will be from the broader ‘community’
and based on their expertise and level of contribution,
a hierarchy of users has been identified.

To enable the hierarchical structure effectively,
each user who registers with the portal gets a certain
privilege level between 0(highest) and 7(lowest).

People from different organisations and
different Geographical backgrounds can collaborate
in developing and maintaining the portal. People can
be situated at different locations and on varied
platforms and yet take part in portal development.

Management of various components / products
/ specific portions of the portal will be delegated to
the appropriate co-developers.

By sending a request to the portal administrator
registering with the portal, content developers, will
be part of a community that brings together project
seekers and users.

They will have access to tutorials, manuals and
source codes for many applications. These can be
downloaded by anonymous ftp.

Developers may work for renumeration this will
be the major source of turnover/revenue generation
within the open source community. On the other hand,
some individuals may choose to work voluntarily for
causes/evangelical pursuits.

General users can register on the portal with
privilege level 7 and access various services like
Indian Language email, chat, address book and
bulletin/discussion groups.

Users can register by providing a username and
an e-mail. An initial password will be dispatched to
the email . At their will, they can sign up for some or
all of these services using the common username.
User can use a browser (Mozilla) and give URL*
http://janabhaaratii.org.in

Once in janabhaaratii, they can click on the link
for Portal.

They can login using name and password they
have received through e-mail.

He/she then enables the script of his/her choice
to enter text.

A typical Interactions

Q Registration at the portal with a username.

Q Access to resources based on username privilege
level.

Q A user work area for contributors / co-developers.

Q Downloads of software and useful resources for
users.

Q Posting messages on bulletin boards relevant to
the user.

Q Access to status pages where progress of
development and translations is presented.

Our endeavor is to make technology in Indian
languages reachable to the vast percentage of Indians
who are not English speakers i.e. the population in
Indian villages with a smooth and easy to use
interface. There are various schemes available under
janabhaaratii to achieve this.

Empowerment schemes under janabhaaratii

Janabhaaratii is the project to enable wide use
of Indian Language computing on GNU/Linux
platform. Following schemes are available through
janabhaaratii:

Q jana-praaMgaNa - Open day - to learn developing
contents in Indian languages (Once in a month)

Q jana-vyaasa-piiTha - A seminar series

Q Teachers’ empowerment - A free seminar for
teachers once in three months.

Q Each school will be given free space to develop
multi-lingual contents on aantarabhaaratii portal
for 2 years.

Q Writers from various linguistic backgrounds will
be given free space on Portal for 2 years.

Q Every month - selection of the best article in each
language.

Conclusion and roadmap for future:

Q Increase in Computer literacy: Portal itself can
be used for increasing Computer literacy as
layman will find it convenient to use it for

28 Linux Thane 2006

education through entertainment.

Q Content development can be facilitated.

Q Teachers training can be taken up so that they can
develop contents on portal.

Q Awareness programs for layman can be taken up.
As operator/grassroots practitioners needs to
understand the basic technology, such as how to
navigate the Internet or to optimize the use of the
available tools

Q Content editors can be selected on honorary basis:
These are prestigious posts like editors of media
publications. As qualitative contents needs to be
maintained, indexed for searching purpose. We
expect teacher community’s support for taking
up this job on honorarium.

Q Despite having an inventive technology
infrastructure, we were unable to attract users.
More and more vendors are coming forward with
easy to use, flexible and affordable GNU/Linux
flavors.

Q Awareness campaigns can be taken up by NGOs,
schools, colleges, social organizations: With
minimum introduction, the use of portal using
alternate technology will create awareness about
the alternate platform : GNU/Linux and facilitates
its learning.

Acknowledgement:

Q Thanks to Zia Saquib, Executive Director, C-
DAC Mumbai for his encouragement.

Q Thanks to TDIL , Ministry of C&IT, Govt of India
for sponsoring the projects janabhaaratii and
indix.

Q Thanks to other Language Computing Group
members at C-DAC Mumbai consisting of Alka
Irani,R K Joshi, Monika Shah, Priti Patil, Siji
Sunny, Gracy Abreo, Jui Mhatre, Supriya
Kharkar, Amit Pundir, Soumen Debgupta, for
experimenting with the portal.

Q Thanks to Vidya Prasarak Mandal especially to
Dr Vijay Bedekar for being first in experimenting
with Indian Language text processing on Indix
platform and coming out with an e-book in
Marathi using GNU/Linux tools and utilities.

Some websites:

http://www.cdacmumbai.in

http://www.janabhaaratii.org.in

http://janabhaaratii.org.in:9673/aantarabhaaratii

http://www.zope.org

http://www.plone.org

29Linux Thane 2006

“Xen Virtualization for Linux”
Amol A Sale

Fellow Department of Computer Science Univ. of Pune 411007.
Email- amoal@cs.unipune.ernet.in

Abstract

This paper provides an overview of the architecture, features, and benefits of Xen Virtualization
Technology the most cost-effective solution for today’s development industries. Virtual machine
technology enables customers to run multiple operating systems concurrently on a single physical
machine. Virtualization addresses a set of key customer scenarios, including consolidating and automating
software test and development environments, migrating legacy applications, consolidating multiple
machine workloads, and testing distributed applications on a single physical machine.

Virtualization is basically a way to run multiple operating systems at the same time on the same machine.
It may be viewed as multitasking, but it is beyond that. Multitasking is mostly used when speaking of
programs. Running several programs at once requires good multitasking abilities. However running
multiple operating systems requires a lot more than that. The advantages of running several OSs
simultaneously are huge, especially for security purposes.

Businesses continually seek ways to reduce cost and risk while increasing quality and agility in their IT
infrastructure. They are always looking for new ways to help improve overall utilization and to increase
the flexibility with which they can deploy their hardware to meet their changing business needs. As x86
platforms have continued to make dramatic improvements in price-to-performance value, software
technologies have evolved to help businesses more effectively harness that improved performance in a
manageable way. Virtualization technology is one such technology

Virtualization as of now is handled only by software. In the sense, there is no specific hardware that is
dedicated for it. Intel has announced Vanderpool technology and AMD Pacifica.

Introduction to Virtualization

There are three main types of virtualization

z Para Virtualization

z Binary Translation

z Emulation

Para virtualization

Over here, the hosted OSs is made aware that
they are in a virtualized environment, and are
modified so will behave correctly. The OSs needs to
be tweaked for this method, and there has to be back
and forth between the OS coders and the
virtualization coders. This is more of co-operative
relationship that completes virtualization. It works
very well for open source OSs where you can tweak
what you want. Linux, xBSD and others are perfect
PV candidates, but windows is not.

Binary Translation

Binary Translation (BT) can be looked as the
middle ground. It analyses what the guest or
‘hosted‘OS is trying to do and changes it on the fly.

If the OS tries to execute an instruction XYZ, and
XYZ will cause problems to the virtualization engine,
then it will change XYZ to something more
acceptable and itself generate the results of what XYZ
should have returned. This has to be done quite
meticulously, and can be CPU time consuming, both
for the monitoring the fancy footwork required to
make sure it’s functioning correctly.

Emulation

It is most popular virtualization technique. The
most people are familiar with it. For example, when
you play Super Mario Bros on the PC, the program
runs in a Super Nintendo emulator. Now suppose you
have several such emulators- for instance, a play
station emulator, or a virtual Atari 2600, each running
a game- this can be considered as most basic form of
virtualization. This is because as far as any game
running in emulator is concerned, it’s running on the
original hardware. However emulation is really
expensive in terms of processor overhead. This is
because an emulator has to reproduce everything
from the CPU instructions to the I/O devices in the
software. It even has to provide cross CPU operation,

30 Linux Thane 2006

such as running windows software on Mac. This
causes a major performance hit since it must translate
every instruction, data transfer, etc.

Why virtualization

Imagine that you’re a developer who need’s to
write a code for a program. This code will need to
run on various operating systems such as windows95,
98, 2000, XP and Linux among others. Now you can
either have five machines on your desk with the select
OSs or one with five virtual OSs running all at once.
Another relevant example would be for a web server.
Suppose there are 50 users on an average computer,
each running a web site, we can have 50 machines or
one. Fifty is definitely the expensive way to go.
Virtualization fixes this by simulating the work one
by several computers. That is, users get what appears
to be their own computer. For all they know, it’s their
own machine and no one else is using it. If they want
standard SuSE or even Red Hat with custom modes
that only can be understood. Through virtualization,
the machine can be completely protected. Even
against harmful scripts, viruses and other problems.
If a code causes an error in the OS, crashing the
machine, it wouldn’t matter because it’d only crash
that particular instance. The OSs could quickly be
reloaded and you wouldn’t even realize what
happened.

How Does It Work?

Virtualization works by setting up ‘virtual
machines’ on the host computer. A virtual machine
is a software environment that sits on top (In terms
of priority and privileges) of one or more OSs and
applications that actually run inside or ‘under’ the
virtual machine. The OSs can’t tell the difference
between operating in ‘real’ machine or in ‘virtual’
machine. Within a virtual machine, you can do almost
anything that you can do with real machine, with
complete safety. A virtual machine can let you use a
given platform’s operating system software under
another OS on the same platform, such as running a
copy of Linux in a virtual machine on your windows
2000 PC. This environment is created by a Virtual
Machine Monitor (VMM). The VMM can create and
manage one or more virtual machines on a single
real machine. Each virtual machine can provide
facilities for an application or guest OS to believe
it’s running in a normal environment with access to
physical hardware and resources.

As shown in the following figure 1

a) In a real machine the OS directly
communicates with the hardware.

b) The Virtual Machine Monitor (VMM) sits
over the OS in terms of privileges

(a)

(b)

Fig 1: Basics of Virtual Machines

The fundamental idea behind a virtual machine
is to abstract the hardware of a single computer (the
CPU, memory, disk drives, network interface cards,
and so forth) into several different execution
environments, thereby creating the illusion that each
separate execution environment is running it’s own
private computer.

Virtualization works by setting up ‘virtual
machines’ on the host computer. A virtual machine

31Linux Thane 2006

is a software environment that sits on top (In terms
of priority and privileges) of one or more OSs and
applications that actually run inside or ‘under’ the
virtual machine. The OSs can’t tell the difference
between operating in ‘real’ machine or in ‘virtual’
machine. Within a virtual machine, you can do almost
anything that you can do with real machine, with
complete safety. A virtual machine can let you use a
given platform’s operating system software under
another OS on the same platform, such as running a
copy of Linux in a virtual machine on your windows
2000 PC. This environment is created by a Virtual
Machine Monitor (VMM). The VMM can create and
manage one or more virtual machines on a single
real machine. Each virtual machine can provide
facilities for an application or guest OS to believe
it’s running in a normal environment with access to
physical hardware and resources.

By using CPU scheduling and virtual memory
techniques, an operating system can create the
illusion that a process has its own processor with its
own (virtual) memory. Normally, a process has
additional features, such as system calls and a file
system that are not provided by the bare hardware.
The virtual machine approach does not provide any
such additional functionality but rather provides an
interface that is identical to the underlying bare
hardware. Each process is provided with the virtual
copy of the underlying computer (fig 2).

There are several reasons for creating a virtual
machine, all of which are fundamentally related to
being able to share the same hardware yet run several
different execution environments (i.e. different
Operating Systems) concurrently.

.

Fig 2 Virtual Machine

A major difficulty with the virtual machine
approach involves disk systems. Suppose that the
physical machine has three disk drives but wants to
support seven virtual machines. Clearly it cannot
allocate a disk drive to each virtual machine, because
the virtual machine software itself will need
substantial disk space to provide virtual memory and
spooling. The solution is to provide virtual disks –
termed minidisks in IBM’s VM operating system –
that are identical in every aspect except size. The
system implements each minidisk by allocating as
many tracks on the physical disk as the minidisk
needs. Obviously the sum of the sizes of all minidisks
must be smaller than the size of the physical disk
space available

Users thus are given their own virtual machines.
They can then run any of the operating systems or
software packages that are available on the
underlying machine. For the IBM VM system, a user
normally runs CMS-a single user interactive
operative operating system. The virtual machine
software is concerned with multiprogramming
multiple virtual machines onto a physical machine,
but it do not need to consider any user support
software. This arrangement may provide a useful way
to divide the problem of designing a multi-user
interactive system.

Implementation of Virtual Machines

Although the concept of virtual-machine is
useful, it is difficult to implement. Much work is
required to provide an exact duplicate of the
underlying machine. Remember that the underlying
machine has two modes: user mode and the kernel
mode. The virtual machine software can run in kernel
mode, since it is the operating system. The virtual
machine itself can operate in only user mode. Just as
the physical machine has two modes, however so
must the virtual machine. Consequently, we must
have a virtual user mode and a virtual kernel mode,
both of which run in a physical user mode. Those
actions that cause the transfer from user mode to
kernel mode on a real machine (such as a system call
or an attempt to execute privileged instruction) must
also cause transfer from virtual user mode to virtual
kernel mode on a virtual machine.

Such a transfer can be accomplished as follows.
When a system call, for example, is made by a
program running on a virtual machine in virtual user
mode, it will cause a transfer to the virtual machine
monitor in the real machine. When the virtual
machine-monitor gains control, it can change the

32 Linux Thane 2006

register contents and program counter for the virtual
machine to simulate the effect of system call. It can
then restart the virtual machine, noting that it is now
in virtual kernel mode.

Current problems faced by Software Virtual
Machines

There are a number of programs available such
as Xen, Microsoft Virtual PC, VMWare that will let
you create and manage virtual machines. However
there are a good number of setbacks that makes
software virtualization a very tedious process. Let
us see those problems.

For the x86 architecture (the entire PC world
as we know runs on x86, except the Mac, which uses
a different architecture, the PowerPC), these involves
the ring based Privilege Levels. Conceptually, priority
rings are a way to divide a system into privilege
levels; you can have an OS running in a level that a
user’s program can’t modify. Here if a program acts
up, it won’t crash the system. Instead being in a higher
privilege level, the OS can take control by shutting
down the offending program. Rings enforce control
over various parts of the system.

There are four rings in x86. These are 0, 1, 2
and 3. The lower the number, the higher is the
privilege. To understand it more simply, an
application running at priority level 2 can only make
changes or mess up things at level 3, and not level 1
or 0.

In practice, OSs typically runs in ring 0 while
user programs run in ring 3. Virtual machines such
as Microsoft virtual PC will have to run in ring 0 in
order to maintain complete control. Further they will
also need to keep the OS out of ring 0 in order to
avoid any sort of conflicts. The solution then is to
force the hosted OS to run in the lower ring, such as
ring 1. This model of virtualization is called the ‘0/
1/3’ model. However there are quite a number of
drawbacks to this model. OSs are used to running in
ring 0 and are coded accordingly, the problem being
that some instructions will only work if they are going
to or from ring 0.

The other model is called as the ‘0/3’ model.
Here the virtual machine is loaded in ring 0 and the
OSs and programs are all in ring 3. Everything
otherwise functions just as it would on the 0/1/3
model. However the OS in ring 3 can be walked on
by user programs with much greater ease, causing a
lot more crashes, blue-screens and what not. But since
the programs don’t have to traverse rings while

talking to the OS, everything works faster. The
advantage here is speed and the drawback security.

To sum it all up, in the 0/1/3 model, you have
the security at the cost of speed. In 0/3, you have
only the 0 to 3 transition, so it can potentially run
faster. However if a problem has to occur, it’s more
likely to happen in the 0/3 model than the 0/1/3
model. From a future perspective thought, 0/3 will
be more widespread mainly because of 64-bit
extensions to the x86 ISA do away with rings 1 and
2. So, if you want to use an x86-64 OS, you are forced
to use 0/3 model.

Xen

Virtualization software vendors today charge a
hefty premium (multiple of server cost) for their
software, to which must be added the usual OS and
application costs. But while todays virtualization
products have allowed enterprises to realize
significant benefits in the development, testing and
QA of n-tier applications, a very high performance
hypervisor is a requirement for data center wide,
production-grade server consolidation and to realize
the promise of a more dynamic IT infrastructure. The
award winning Xen open source hypervisor, created
and maintained by XenSource,is now delivering the
benefits that enterprises demand from virtualization
software , because it outperforms existing hypervisors
by an order of magnitude while providing guaranteed
service levels to each guest OS.

Moreover Xen is secure by design, runs across
chipset architectures from IBM, Intel, AMD and Sun,
supports all operating systems, and is freely available
as open source software. Consequently Xen is being
strongly endorsed by major industry players as the
right way to achieve the benefits of enterprise
Virtualization.

Fig 3 Protection rings

33Linux Thane 2006

What Xen is:

Xen is the industries fastest and most secure
hypervisor. Open source software, collaboratively
developed by over 20 of the worlds leading enterprise
infrastructure vendors. It is a common, open industry
standard code base that supports all operating systems
with high performance and security. It is open for
innovation with the addition of additional value

Virtualization is set to become a key
requirement for every server in the data center. This
trend is a direct consequence of an industry wide
focus on the need to reduce the Total Cost of
Operation (TCO) of enterprise computing
infrastructure. In spite of the widespread adoption
of relatively cheap, industry standard x86-based
servers, enterprises have seen costs and complexity
escalate rapidly.

Today, for every dollar spent on computing
hardware, as many as five dollars are spent on lifetime
costs, support, maintenance, and software licenses.
Operating System Virtualization, a concept pioneered
by IBM in 1972 on the System 360, has become a
key requirement, because it enables server
consolidation, allowing multiple operating system
and application images to share each server, cutting
both hardware and lifetime costs.

There is another price too: vendors of
virtualization software today charge a hefty premium
(multiples of the server cost) for their software, to
which must be added the usual OS and application
costs. But while today’s virtualization products have
allowed enterprises to realize significant benefits in
the development, testing and QA of n-tier
applications, a very high performance hypervisor is
a requirement for production-grade server
consolidation and to realize the promise of a more
dynamic IT infrastructure. Xen, a free software
hypervisor, is poised to deliver these benefits, because
it outperforms existing VMM by an order of
magnitude while providing guaranteed service levels
to each guest OS. Furthermore, Xen is freely available
as free software, and is being broadly supported by
major industry players.

Key benefits:

Virtualization provides the following key
benefits:

Improved hardware efficiency

Virtualization provides a platform that improves
hardware efficiency across a wide range of host

hardware systems, can run many different x86
operating systems in the guest environment, and
provides an optimized guest experience for operating
systems. Policy-based management features offer
both weighting and constraint methods for fine-
grained control of individual virtual machines.

Increased administrator productivity

Support for virtual networking help make
administrators more productive by offering scripted
control of portable, connected virtual machines.
These features enable easy automation of deployment
and ongoing change configuration.

Consolidate and Automate Software Test and
Development Environments

Virtual machine technology was developed
over a quarter century ago to address these same
challenges first encountered during the mainframe
era, enabling side-by-side testing and production
partitions on the same system.

Migrate Legacy Applications

As an IT infrastructure enables increasingly
powerful and reliable solutions, a recurring challenge
for many businesses is the management and
maintenance of existing server-based applications.
Business applications often outlive their original
operating system or hardware, and as support for
these primary infrastructural elements diminishes
over time, cost of ownership steadily increases. Under
ideal conditions, customers would prefer to continue
running business applications unchanged, but three
factors increase the urgency of legacy application re-
hosting:

z Diminishing hardware support for legacy
operating systems.

z High time and cost of administrating server-
based legacy applications.

z High cost and risk to upgrade or rewrite legacy
applications for increased quality and agility.

z Consolidate Workloads

Consolidation reduces the number of physical
machines under management for an optimized IT
infrastructure. Specific workloads demand specific
approaches, each with its own benefit.

Conclusion

Virtualization represents the wave of the future
for optimizing hardware utilization and datacenter

34 Linux Thane 2006

agility. Intel architecture supports flexible and cost-
effective virtualization solutions today, using Xen.
These solutions are already delivering substantial
value in a wide range of production environments.
Intel Virtualization Technology and AMD Pacifica
will increase these benefits, enabling support to
virtualization in an integrated and seamless fashion.
By providing a new privilege layer for VMM
software, and supporting key virtualization functions
in hardware, Virtualization Technology will simplify
VMM development and maintenance, improve
interoperability with legacy OSs, enhance security
and reliability, and reduce the cost and risk of
implementation. Virtualization Technology is one of
a series of platform advances that will be delivered
over the next few years to provide critical support
for enhanced datacenter flexibility, manageability,
and security. Along with ongoing scaling of absolute
performance and price/performance, these
innovations will deliver increasing business value.

References

Book:

z Operating System Principles : 7th Edition
Abraham Silberschatz, Peter Baer Galvin, Greg
Gagne

Magazine:

z Chip (July 2005)

“All OSs in one” Nikhil Hemrajani

URLs:

z http://www.cl.cam.ac.uk/research/srg/netos/
papers/2003-xensosp.pdf

z http://www.cl.cam.ac.uk/research/srg/netos/xen/

z http://www.xensource.com/

z http://sourceforge.net/projects/xen/

z http://en.wikipedia.org/wiki/Xen

z http://www.intel.com

z www.amd.com

z www.ibm.com

35Linux Thane 2006

Parallel Virtual Machine (PVM) - A Comprehensive Study
Hiren Dand1, Sagar Kotekar-Patil2 , Santosh Kumar Soni3

1. Lecturer, Mulund College of Commerce, Mumbai – 80
2. Lecturer, D. G. Ruparel College, Mumbai – 16

3. Lecturer, K. C. College, Mumbai – 20

Abstract
In this paper we describe the Parallel Virtual Machine (PVM) System and its features. PVM is a software
system that permits a heterogeneous collection of computers networked together to be viewed by a
user’s program as a single parallel computer. PVM is the mainstay of the Heterogeneous Network
Computing research project a collaborative venture between Oak Ridge National Laboratory, the
University of Tennessee, Emory University and Carnegie Mellon University.

The PVM system has evolved in the past several years into a viable technology for distributed and
parallel processing in a variety of disciplines. PVM supports a straight forward but functionally complete
message passing model. PVM is designed to link computing resources and provide users with a parallel
platform for running their computer applications irrespective of the number of different computers they
use and where the computers are located. PVM is capable of harnessing the combined resources of
typically heterogeneous networked computing platforms to deliver high levels of performance and
functionality. In this paper we describe the architecture of the PVM system and discuss its computing
model.

Introduction

Parallel processing - the method of having
many small tasks solve one large problem has
emerged as a key enabling technology in modern
computing. The past several years have witnessed an
ever-increasing acceptance and adoption of parallel
processing both for high performance scientific
computing and for more general-purpose application
was a result of the demand for higher performance
lower cost and sustained productivity. The acceptance
has been facilitated by two major developments.
Massively parallel processors MPPs and the
widespread use of distributed computing. MPPs are
now the most powerful computers in the world. These
machines combine a few hundred to a few thousand
CPUs in a single large cabinet connected to hundreds
of gigabytes of memory. MPPs offer enormous
computational power and are used to solve
computational Grand Challenge problems such as
global climate modeling and drug design. As
simulations become more realistic, the computational
power required to produce them grows rapidly. Thus
researchers on the cutting edge turn to MPPs and
parallel processing in order to get the most
computational power possible. The second major
development affecting scientific problem solving is
distributed computing. Distributed computing is a
process whereby a set of computers connected by a
network are used collectively to solve a single large

problem. As more and more organizations have high-
speed local area networks interconnecting many
general-purpose workstations the combined
computational resources may exceed the power of a
single high-performance computer. In some cases
several MPPs have been combined using distributed
computing to produce unequaled computational
power. The most important factor in distributed
computing is cost. Large MPPs typically cost more
than a million. In contrast users see very little cost in
running their problems on a local set of existing
computers. It is uncommon for distributed computing
users to realize the raw computational power of a
large MPP but they are able to solve problems several
times larger than they could use one of their local
computers. Common between distributed computing
and MPP is the notion of message passing. In all
parallel processing data must be exchanged between
cooperating tasks. Several paradigms have been tried
including shared memory parallelizing compilers and
message passing. The message passing model has
become the paradigm of choice from the perspective
of the number and variety of multiprocessors that
support it as well as in terms of applications
languages and software systems that use it. The
Parallel Virtual Machine PVM system described in
this paper uses the message passing model to allow
programmers to exploit distributed computing across
a wide variety of computer types including MPPs. A

36 Linux Thane 2006

key concept in PVM is that it makes a collection of
computers appear as one large virtual machine hence
its name.

Heterogeneous Network Computing

In an MPP, every processor is exactly like every
other in capability, resources, software, and
communication speed. Not so on a network. The
computers available on a network may be made by
different vendors or have different compilers. Indeed,
when a programmer wishes to exploit a collection of
networked computers, he may have to contend with
several different types of heterogeneity:

Q architecture

Q data format

Q computational speed

Q machine load and

Q network load

The set of computers available can include a
wide range of architecture types such as 386/486 PC
class machines, high-performance workstations,
shared-memory multiprocessors, vector
supercomputers, and even large MPPs. Each
architecture type has its own optimal programming
method. In addition, a user can be faced with a
hierarchy of programming decisions. The parallel
virtual machine may itself be composed of parallel
computers. Even when the architectures are only
serial workstations, there is still the problem of
incompatible binary formats and the need to compile
a parallel task on each different machine.

Data formats on different computers are often
incompatible. This incompatibility is an important
point in distributed computing because data sent from
one computer may be unreadable on the receiving
computer. Message-passing packages developed for
heterogeneous environments must make sure all the
computers understand the exchanged data.
Unfortunately, the early message-passing systems
developed for specific MPPs are not amenable to
distributed computing because they do not include
enough information in the message to encode or
decode it for any other computer.

Even if the set of computers are all workstations
with the same data format, there is still heterogeneity
due to different computational speeds. As an simple
example, consider the problem of running parallel
tasks on a virtual machine that is composed of one
supercomputer and one workstation. The programmer

must be careful that the supercomputer doesn’t sit
idle waiting for the next data from the workstation
before continuing. The problem of computational
speeds can be very subtle. The virtual machine can
be composed of a set of identical workstations. But
since networked computers can have several other
users on them running a variety of jobs, the machine
load can vary dramatically. The result is that the
effective computational power across identical
workstations can vary by an order of magnitude.

Like machine load, the time it takes to send a
message over the network can vary depending on the
network load imposed by all the other network users,
who may not even be using any of the computers in
the virtual machine. This sending time becomes
important when a task is sitting idle waiting for a
message, and it is even more important when the
parallel algorithm is sensitive to message arrival time.
Thus, in distributed computing, heterogeneity can
appear dynamically in even simple setups.

Despite these numerous difficulties caused by
heterogeneity, distributed computing offers many
advantages:

Q By using existing hardware, the cost of this
computing can be very low.

Q Performance can be optimized by assigning each
individual task to the most appropriate
architecture.

Q One can exploit the heterogeneous nature of a
computation. Heterogeneous network computing
is not just a local area network connecting
workstations together. For example, it provides
access to different data bases or to special
processors for those parts of an application that
can run only on a certain platform.

Q The virtual computer resources can grow in stages
and take advantage of the latest computational
and network technologies.

Q Program development can be enhanced by using
a familiar environment. Programmers can use
editors, compilers, and debuggers that are
available on individual machines.

Q The individual computers and workstations are
usually stable, and substantial expertise in their
use is readily available.

Q User-level or program-level fault tolerance can
be implemented with little effort either in the
application or in the underlying operating system.

37Linux Thane 2006

Q Distributed computing can facilitate collaborative
work.

All these factors translate into reduced
development and debugging time, reduced contention
for resources, reduced costs, and possibly more
effective implementations of an application. It is these
benefits that PVM seeks to exploit. From the
beginning, the PVM software package was designed
to make programming for a heterogeneous collection
of machines straightforward.

Trends in Distributed Computing

Stand-alone workstations delivering several
tens of millions of operations per second are
commonplace, and continuing increases in power are
predicted. When these computer systems are
interconnected by an appropriate high-speed network,
their combined computational power can be applied
to solve a variety of computationally intensive
applications. Indeed, network computing may even
provide supercomputer-level computational power.
Further, under the right circumstances, the network-
based approach can be effective in coupling several
similar multiprocessors, resulting in a configuration
that might be economically and technically difficult
to achieve with supercomputer hardware.

To be effective, distributed computing requires
high communication speeds.

Among the most notable advances in computer
networking technology are the following:

Q Ethernet - the name given to the popular local
area packet-switched network technology
invented by Xerox PARC. The Ethernet is a 10
Mbit/s broadcast bus technology with distributed
access control.

Q FDDI - the Fiber Distributed Data Interface.
FDDI is a 100-Mbit/sec token-passing ring that
uses optical fiber for transmission between
stations and has dual counter-rotating rings to
provide redundant data paths for reliability.

Q HiPPI - the high-performance parallel interface.
HiPPI is a copper-based data communications
standard capable of transferring data at 800 Mbit/
sec over 32 parallel lines or 1.6 Gbit/sec over
64 parallel lines. Most commercially available
high-performance computers offer a HIPPI
interface. It is a point-to-point channel that does
not support multidrop configurations.

Q SONET - Synchronous Optical Network.

SONET is a series of optical signals that are
multiples of a basic signal rate of 51.84 Mbit/
sec called OC-1. The OC-3 (155.52 Mbit/sec)
and OC-12 (622.08 Mbit/sec) have been
designated as the customer access rates in future
B-ISDN networks, and signal rates of OC-192
(9.952 Gbit/sec) are defined.

Q ATM - Asynchronous Transfer Mode. ATM is
the technique for transport, multiplexing, and
switching that provides a high degree of
flexibility required by B-ISDN. ATM is a
connection-oriented protocol employing fixed-
size packets with a 5-byte header and 48 bytes
of information.

These advances in high-speed networking
promise high throughput with low latency and make
it possible to utilize distributed computing for years
to come. Consequently, increasing numbers of
universities, government and industrial laboratories,
and financial firms are turning to distributed
computing to solve their computational problems.
The objective of PVM is to enable these institutions
to use distributed computing efficiently.

PVM Overview

The PVM software provides a unified
framework within which parallel programs can be
developed in an efficient and straightforward manner
using existing hardware. PVM enables a collection
of heterogeneous computer systems to be viewed as
a single parallel virtual machine. PVM transparently
handles all message routing, data conversion, and task
scheduling across a network of incompatible
computer architectures.

The PVM computing model is simple yet very
general, and accommodates a wide variety of
application program structures. The programming
interface is deliberately straightforward, thus
permitting simple program structures to be
implemented in an intuitive manner. The user writes
his application as a collection of cooperating tasks.
Tasks access PVM resources through a library of
standard interface routines. These routines allow the
initiation and termination of tasks across the network
as well as communication and synchronization
between tasks. The PVM message-passing primitives
are oriented towards heterogeneous operation,
involving strongly typed constructs for buffering and
transmission. Communication constructs include
those for sending and receiving data structures as
well as high-level primitives such as broadcast,

38 Linux Thane 2006

barrier synchronization, and global sum.

PVM tasks may possess arbitrary control and
dependency structures. In other words, at any point
in the execution of a concurrent application, any task
in existence may start or stop other tasks or add or
delete computers from the virtual machine. Any
process may communicate and/or synchronize with
any other. Any specific control and dependency
structure may be implemented under the PVM system
by appropriate use of PVM constructs and host
language control-flow statements.

Owing to its ubiquitous nature (specifically, the
virtual machine concept) and also because of its
simple but complete programming interface, the
PVM system has gained widespread acceptance in
the high-performance scientific computing
community.

The PVM System

PVM is an integrated set of software tools and
libraries that emulates a general-purpose, flexible,
heterogeneous concurrent computing framework on
interconnected computers of varied architecture. The
overall objective of the PVM system is to enable such
a collection of computers to be used cooperatively
for concurrent or parallel computation. Detailed
descriptions and discussions of the concepts,
logistics, and methodologies involved in this
network-based computing process are contained in
the remainder of the book. Briefly, the principles upon
which PVM is based include the following:

Q User-configured host pooll : The application’s
computational tasks execute on a set of machines
that are selected by the user for a given run of
the PVM program. Both single-CPU machines
and hardware multiprocessors (including shared-
memory and distributed-memory computers) may
be part of the host pool. The host pool may be
altered by adding and deleting machines during
operation (an important feature for fault
tolerance).

Q Translucent access to hardware: Application
programs either may view the hardware
environment as an attributeless collection of
virtual processing elements or may choose to
exploit the capabilities of specific machines in
the host pool by positioning certain
computational tasks on the most appropriate
computers.

Q Process-based computation: The unit of

parallelism in PVM is a task (often but not always
a Unix process), an independent sequential thread
of control that alternates between communication
and computation. No process-to-processor
mapping is implied or enforced by PVM; in
particular, multiple tasks may execute on a single
processor.

Q Explicit message-passing model: Collections of
computational tasks, each performing a part of
an application’s workload using data-, functional-
, or hybrid decomposition, cooperate by explicitly
sending and receiving messages to one another.
Message size is limited only by the amount of
available memory.

Q Heterogeneity support: The PVM system
supports heterogeneity in terms of machines,
networks, and applications. With regard to
message passing, PVM permits messages
containing more than one datatype to be
exchanged between machines having different
data representations.

Q Multiprocessor support: PVM uses the native
message-passing facilities on multiprocessors to
take advantage of the underlying hardware.
Vendors often supply their own optimized PVM
for their systems, which can still communicate
with the public PVM version.

The PVM system is composed of two parts.
The first part is a daemon , called pvmd3 and
sometimes abbreviated pvmd , that resides on all the
computers making up the virtual machine. (An
example of a daemon program is the mail program
that runs in the background and handles all the
incoming and outgoing electronic mail on a
computer.) Pvmd3 is designed so any user with a valid
login can install this daemon on a machine. When a
user wishes to run a PVM application, he first creates
a virtual machine by starting up PVM. (Chapter 3
details how this is done.) The PVM application can
then be started from a Unix prompt on any of the
hosts. Multiple users can configure overlapping
virtual machines, and each user can execute several
PVM applications simultaneously.

The second part of the system is a library of
PVM interface routines. It contains a functionally
complete repertoire of primitives that are needed for
cooperation between tasks of an application. This
library contains user-callable routines for message
passing, spawning processes, coordinating tasks, and
modifying the virtual machine.

39Linux Thane 2006

The PVM computing model is based on the
notion that an application consists of several tasks.
Each task is responsible for a part of the application’s
computational workload. Sometimes an application
is parallelized along its functions; that is, each task
performs a different function, for example, input,
problem setup, solution, output, and display. This
process is often called functional parallelism. A more
common method of parallelizing an application is
called data parallelism. In this method all the tasks
are the same, but each one only knows and solves a
small part of the data. This is also referred to as the
SPMD (single-program multiple-data) model of
computing. PVM supports either or a mixture of these
methods. Depending on their functions, tasks may
execute in parallel and may need to synchronize or
exchange data, although this is not always the case.
An exemplary diagram of the PVM computing model
is shown in Figure. and an architectural view of the
PVM system, highlighting the heterogeneity of the
computing platforms supported by PVM, is shown
in Figure.

The PVM system currently supports C, C++,
and Fortran languages. This set of language interfaces
have been included based on the observation that the
predominant majority of target applications are
written in C and Fortran, with an emerging trend in
experimenting with object-based languages and
methodologies.

The C and C++ language bindings for the PVM
user interface library are implemented as functions,
following the general conventions used by most C
systems, including Unix-like operating systems. To

elaborate, function arguments are a combination of
value parameters and pointers as appropriate, and
function result values indicate the outcome of the
call. In addition, macro definitions are used for
system constants, and global variables such as errno
and pvm_errno are the mechanism for discriminating
between multiple possible outcomes. Application
programs written in C and C++ access PVM library
functions by linking against an archival library
(libpvm3.a) that is part of the standard distribution.

Fortran language bindings are implemented as
subroutines rather than as functions. This approach
was taken because some compilers on the supported
architectures would not reliably interface Fortran
functions with C functions. One immediate
implication of this is that an additional argument is
introduced into each PVM library call for status
results to be returned to the invoking program. Also,
library routines for the placement and retrieval of
typed data in message buffers are unified, with an
additional parameter indicating the datatype. Apart
from these differences (and the standard naming
prefixes - pvm_ for C, and pvmf for Fortran), a one-
to-one correspondence exists between the two
language bindings. Fortran interfaces to PVM are
implemented as library stubs that in turn invoke the
corresponding C routines, after casting and/or
dereferencing arguments as appropriate. Thus,
Fortran applications are required to link against the
stubs library (libfpvm3.a) as well as the C library.

All PVM tasks are identified by an integer task
identifier (TID). Messages are sent to and received
from tids. Since tids must be unique across the entire
virtual machine, they are supplied by the local pvmd

40 Linux Thane 2006

and are not user chosen. Although PVM encodes
information into each TID, the user is expected to
treat the tids as opaque integer identifiers. PVM
contains several routines that return TID values so
that the user application can identify other tasks in
the system.

There are applications where it is natural to
think of a group of tasks. And there are cases where
a user would like to identify his tasks by the numbers
0 - (p - 1), where p is the number of tasks. PVM
includes the concept of user named groups. When a
task joins a group, it is assigned a unique “instance”
number in that group. Instance numbers start at 0
and count up. In keeping with the PVM philosophy,
the group functions are designed to be very general
and transparent to the user. For example, any PVM
task can join or leave any group at any time without
having to inform any other task in the affected groups.
Also, groups can overlap, and tasks can broadcast
messages to groups of which they are not a member.
To use any of the group functions, a program must
be linked with libgpvm3.a.

The general paradigm for application
programming with PVM is as follows. A user writes
one or more sequential programs in C, C++, or
Fortran 77 that contain embedded calls to the PVM
library. Each program corresponds to a task making
up the application. These programs are compiled for
each architecture in the host pool, and the resulting
object files are placed at a location accessible from
machines in the host pool. To execute an application,
a user typically starts one copy of one task (usually
the “master” or “initiating” task) by hand from a
machine within the host pool. This process
subsequently starts other PVM tasks, eventually
resulting in a collection of active tasks that then
compute locally and exchange messages with each
other to solve the problem. Note that while the above
is a typical scenario, as many tasks as appropriate
may be started manually. As mentioned earlier, tasks
interact through explicit message passing, identifying
each other with a system-assigned, opaque TID.

Basic Programming Techniques

Developing applications for the PVM system-
in a general sense, at least-follows the traditional
paradigm for programming distributed-memory
multiprocessors such as the nCUBE or the Intel
family of multiprocessors. The basic techniques are
similar both for the logistical aspects of programming
and for algorithm development. Significant

differences exist, however, in terms of (a) task
management, especially issues concerning dynamic
process creation, naming, and addressing; (b)
initialization phases prior to actual computation; (c)
granularity choices; and (d) heterogeneity. We discuss
the programming process for PVM and identify
factors that may impact functionality and
performance.

Common Parallel Programming Paradigms

Parallel computing using a system such as PVM
may be approached from three fundamental
viewpoints, based on the organization of the
computing tasks. Within each, different workload
allocation strategies are possible and will be
discussed later in this chapter. The first and most
common model for PVM applications can be termed
“crowd” computing : a collection of closely related
processes, typically executing the same code, perform
computations on different portions of the workload,
usually involving the periodic exchange of
intermediate results. This paradigm can be further
subdivided into two categories:

Q The master-slave (or host-node) model in which
a separate “control” program termed the master
is responsible for process spawning,
initialization, collection and display of results,
and perhaps timing of functions. The slave
programs perform the actual computation
involved; they either are allocated their
workloads by the master (statically or
dynamically) or perform the allocations
themselves.

Q The node-only model where multiple instances
of a single program execute, with one process
(typically the one initiated manually) taking over
the noncomputational responsibilities in addition
to contributing to the computation itself.

The second model supported by PVM is termed
a “tree” computation. In this scenario, processes are
spawned (usually dynamically as the computation
progresses) in a tree-like manner, thereby establishing
a tree-like, parent-child relationship (as opposed to
crowd computations where a star-like relationship
exists). This paradigm, although less commonly used,
is an extremely natural fit to applications where the
total workload is not known a priori, for example, in
branch-and-bound algorithms, alpha-beta search, and
recursive “divide-and-conquer” algorithms.

41Linux Thane 2006

The third model, which we term “hybrid,” can
be thought of as a combination of the tree model and
crowd model. Essentially, this paradigm possesses
an arbitrary spawning structure: that is, at any point
during application execution, the process relationship
structure may resemble an arbitrary and changing
graph.

We note that these three classifications are made
on the basis of process relationships, though they
frequently also correspond to communication
topologies. Nevertheless, in all three, it is possible
for any process to interact and synchronize with any
other. Further, as may be expected, the choice of
model is application dependent and should be
selected to best match the natural structure of the
parallelized program.

Crowd Computations

Crowd computations typically involve three
phases. The first is the initialization of the process
group; in the case of node-only computations,
dissemination of group information and problem
parameters, as well as workload allocation, is
typically done within this phase. The second phase
is computation. The third phase is collection results
and display of output; during this phase, the process
group is disbanded or terminated.

The master-slave model is illustrated below,
using the well-known Mandelbrot set computation
which is representative of the class of problems
termed “embarrassingly” parallel. The computation
itself involves applying a recursive function to a
collection of points in the complex plane until the
function values either reach a specific value or begin
to diverge. Depending upon this condition, a
graphical representation of each point in the plane is
constructed. Essentially, since the function outcome
depends only on the starting value of the point (and
is independent of other points), the problem can be
partitioned into completely independent portions, the
algorithm applied to each, and partial results
combined using simple combination schemes.
However, this model permits dynamic load balancing,
thereby allowing the processing elements to share
the workload unevenly. In this and subsequent
examples within this chapter, we only show a skeletal
form of the algorithms, and also take syntactic
liberties with the PVM routines in the interest of
clarity. The control structure of the master-slave class
of applications is shown below:

 Master-slave paradigm

Tree Computations

As mentioned earlier, tree computations
typically exhibit a tree-like process control structure
which also conforms to the communication pattern
in many instances. To illustrate this model, we
consider a parallel sorting algorithm that works as
follows. One process (the manually started process
in PVM) possesses (inputs or generates) the list to
be sorted. It then spawns a second process and sends
it half the list. At this point, there are two processes
each of which spawns a process and sends them one-
half of their already halved lists. This continues until
a tree of appropriate depth is constructed. Each
process then independently sorts its portion of the
list, and a merge phase follows where sorted sublists
are transmitted upwards along the tree edges, with
intermediate merges being done at each node. This
algorithm is illustrative of a tree computation in
which the workload is known in advance; a diagram
depicting the process is shown below:

Workload Allocation

We discussed the common parallel
programming paradigms with respect to process
structure, and we outlined representative examples
in the context of the PVM system. In this section we
address the issue of workload allocation, subsequent
to establishing process structure, and describe some
common paradigms that are used in distributed-
memory parallel computing. Two general
methodologies are commonly used. The first, termed
data decomposition or partitioning, assumes that the
overall problem involves applying computational
operations or transformations on one or more data
structures and, further, that these data structures may
be divided and operated upon. The second, called
function decomposition, divides the work based on
different operations or functions. In a sense, the PVM
computing model supports both function

42 Linux Thane 2006

decomposition (fundamentally different tasks
perform different operations) and data decomposition
(identical tasks operate on different portions of the
data).

Data Decomposition

As a simple example of data decomposition,
consider the addition of two vectors, A[1..N] and
B[1..N], to produce the result vector, C[1..N]. If we
assume that P processes are working on this problem,
data partitioning involves the allocation of N/P
elements of each vector to each process, which
computes the corresponding N/P elements of the
resulting vector. This data partitioning may be done
either “statically,” where each process knows a priori
(at least in terms of the variables N and P) its share
of the workload, or “dynamically,” where a control
process (e.g., the master process) allocates subunits
of the workload to processes as and when they
become free. The principal difference between these
two approaches is “scheduling.” With static
scheduling, individual process workloads are fixed;
with dynamic scheduling, they vary as the
computation progresses. In most multiprocessor
environments, static scheduling is effective for
problems such as the vector addition example;
however, in the general PVM environment, static
scheduling is not necessarily beneficial. The reason
is that PVM environments based on networked
clusters are susceptible to external influences;
therefore, a statically scheduled, data-partitioned
problem might encounter one or more processes that
complete their portion of the workload much faster
or much slower than the others. This situation could
also arise when the machines in a PVM system are
heterogeneous, possessing varying CPU speeds and
different memory and other system attributes.

In a real execution of even this trivial vector
addition problem, an issue that cannot be ignored is
input and output. In other words, how do the
processes described above receive their workloads,
and what do they do with the result vectors? The
answer to these questions depends on the application
and the circumstances of a particular run, but in
general:

1. Individual processes generate their own data
internally, for example, using random numbers or
statically known values. This is possible only in very
special situations or for program testing purposes.

2. Individual processes independently input
their data subsets from external devices. This method

is meaningful in many cases, but possible only when
parallel I/O facilities are supported.

3. A controlling process sends individual data
subsets to each process. This is the most common
scenario, especially when parallel I/O facilities do
not exist. Further, this method is also appropriate
when input data subsets are derived from a previous
computation within the same application.

The third method of allocating individual
workloads is also consistent with dynamic scheduling
in applications where interprocess interactions during
computations are rare or nonexistent. However,
nontrivial algorithms generally require intermediate
exchanges of data values, and therefore only the
initial assignment of data partitions can be
accomplished by these schemes.

Function Decomposition

Parallelism in distributed-memory
environments such as PVM may also be achieved by
partitioning the overall workload in terms of different
operations. The most obvious example of this form
of decomposition is with respect to the three stages
of typical program execution, namely, input,
processing, and result output. In function
decomposition, such an application may consist of
three separate and distinct programs, each one
dedicated to one of the three phases. Parallelism is
obtained by concurrently executing the three
programs and by establishing a “pipeline”
(continuous or quantized) between them. Note,
however, that in such a scenario, data parallelism may
also exist within each phase.

Porting Existing Applications to PVM

In order to utilize the PVM system, applications
must evolve through two stages. The first concerns
development of the distributed-memory parallel
version of the application algorithm(s); this phase is
common to the PVM system as well as to other
distributed-memory multiprocessors. The actual
parallelization decisions fall into two major
categories - those related to structure, and those
related to efficiency. For structural decisions in
parallelizing applications, the major decisions to be
made include the choice of model to be used (i.e.,
crowd computation vs. tree computation and data
decomposition vs. function decomposition).
Decisions with respect to efficiency when
parallelizing for distributed-memory environments
are generally oriented toward minimizing the
frequency and volume of communications. It is

43Linux Thane 2006

typically in this latter respect that the parallelization
process differs for PVM and hardware
multiprocessors; for PVM environments based on
networks, large granularity generally leads to better
performance. With this qualification, the
parallelization process is very similar for PVM and
for other distributed-memory environments,
including hardware multiprocessors.

The parallelization of applications may be done
ab initio, from existing sequential versions, or from
existing parallel versions. In the first two cases, the
stages involved are to select an appropriate algorithm
for each of the subtasks in the application, usually
from published descriptions or by inventing a parallel
algorithm, and to then code these algorithms in the
language of choice (C, C++, or Fortran 77 for PVM)
and interface them with each other as well as with
process management and other constructs.
Parallelization from existing sequential programs
also follows certain general guidelines, primary
among which are to decompose loops, beginning with
outermost loops and working inward. In this process,
the main concern is to detect dependencies and to
partition loops such that the dependencies are
preserved while allowing for concurrency. This
parallelization process is described in numerous
textbooks and papers on parallel computing, although
few textbooks discuss the practical and specific
aspects of transforming a sequential program to a
parallel one.

Existing parallel programs may be based upon
either the shared-memory or distributed-memory
paradigms. Converting existing shared-memory
programs to PVM is similar to converting from
sequential code, when the shared-memory versions
are based upon vector or loop-level parallelism. In
the case of explicit shared memory programs, the
primary task is to locate synchronization points and
replace these with message passing. In order to
convert existing distributed-memory parallel code to
PVM, the main task is to convert from one set of
concurrency constructs to another. Typically, existing
distributed memory parallel programs are written
either for hardware multiprocessors or other
networked environments such as p4 or Express. In
both cases, the major changes required are with
regard to process management. For example, in the
Intel family of DMMPs, it is common for processes
to be started from an interactive shell command line.
Such a paradigm should be replaced for PVM by
either a master program or a node program that takes
responsibility for process spawning. With regard to

interaction, there is, fortunately, a great deal of
commonality between the message-passing calls in
various programming environments. The major
differences between PVM and other systems in this
context are with regard to (a) process management
and process addressing schemes; (b) virtual machine
configuration/reconfiguration and its impact on
executing applications; (c) heterogeneity in messages
as well as the aspect of heterogeneity that deals with
different architectures and data representations; and
(d) certain unique and specialized features such as
signaling, and task scheduling methods.

How PVM Works

In this part we describe the implementation of
the PVM software and the reasons behind the basic
design decisions. The most important goals for PVM
3 are fault tolerance, scalability, heterogeneity, and
portability. PVM is able to withstand host and
network failures. It doesn’t automatically recover an
application after a crash, but it does provide polling
and notification primitives to allow fault-tolerant
applications to be built. The virtual machine is
dynamically reconfigurable. This property goes hand
in hand with fault tolerance: an application may need
to acquire more resources in order to continue
running once a host has failed. Management is as
decentralized and localized as possible, so virtual
machines should be able to scale to hundreds of hosts
and run thousands of tasks. PVM can connect
computers of different types in a single session. It
runs with minimal modification on any flavor of Unix
or an operating system with comparable facilities
(multitasking, networkable). The programming
interface is simple but complete, and any user can
install the package without special privileges.

To allow PVM to be highly portable, we avoid
the use of operating system and language features
that would be hard to retrofit if unavailable, such as
multithreaded processes and asynchronous I/O. These
exist in many versions of Unix, but they vary enough
from product to product that different versions of
PVM might need to be maintained. The generic port
is kept as simple as possible, though PVM can always
be optimized for any particular machine.

We assume that sockets are used for
interprocess communication and that each host in a
virtual machine group can connect directly to every
other host via TCP and UDP protocols. The
requirement of full IP connectivity could be removed
by specifying message routes and using the pvmds
to forward messages. Some multiprocessor machines

44 Linux Thane 2006

don’t make sockets available on the processing nodes,
but do have them on the front-end (where the pvmd
runs).

XPVM

It is often useful and always reassuring to be
able to see the present configuration of the virtual
machine and the status of the hosts. It would be even
more useful if the user could also see what his
program is doing-what tasks are running, where
messages are being sent, etc. The PVM GUI called
XPVM was developed to display this information
and more.

XPVM combines the capabilities of the PVM
console, a performance monitor, and a call-level
debugger into a single, easy-to-use X-Windows
interface. XPVM is available from netlib in the
directory pvm3/xpvm. It is distributed as
precompiled, ready-to-run executables for SUN4,
RS6K, ALPHA, SUN4SOL2, HPPA, and SGI5. The
XPVM source is also available for compiling on other
machines.

XPVM is written entirely in C using the TCL/
TK toolkit and runs just like another PVM task. If a
user wishes to build XPVM from the source, he must
first obtain and install the TCL/TK software on his
system. TCL and TK were developed by John
Ousterhout at Berkeley and can be obtained by
anonymous ftp to sprite.berkeley.edu The TCL and
XPVM source distributions each contain a README
file that describes the most up-to-date installation
procedure for each package respectively.

References

1. PVM: Parallel Virtual Machine A Users’ Guide
and Tutorial for Networked Parallel
Computing by Al Geist, Adam Beguelin, Jack
Dongarra, Weicheng Jiang, Robert Manchek and
Vaidy Sunderam

2. http://mjfrazer.org/~mjfrazer/uw/pvm/

3. http://www.netlib.org/pvm3/book/

45Linux Thane 2006

MPI: A Comprehensive Study
Sagar Kotekar-Patil1 , Hiren Dand2 , Santosh Kumar Soni3

1. Lecturer, D. G. Ruparel College, Mumbai – 16
2. Lecturer, Mulund College of Commerce, Mumbai – 80

3. Lecturer, K. C. College, Mumbai – 20

Abstract
In this paper we describe Message Passing Interface (MPI) System and its features. The Message
Passing Interface (MPI) is a computer communications protocol. It is a de facto standard for
communication among the nodes running a parallel program on a distributed memory system. MPI
implementations consist of a library of routines that can be called from Fortran, C, C++ and Ada programs.
The advantage of MPI over older message passing libraries is that it is both portable (because MPI has
been implemented for almost every distributed memory architecture) and fast (because each
implementation is optimized for the hardware on which it runs). Also we have described some new
implementations of MPI (getting inspired by PVM) inheriting some features from PVM like fault
tolerance, language interoperabalibity etc.

Overview and Goals

Message passing is a paradigm used widely on
certain classes of parallel machines, especially those
with distributed memory. Although there are many
variations, the basic concept of processes
communicating through messages is well understood.
Over the last ten years, substantial progress has been
made in casting significant applications in this
paradigm. Each vendor has implemented its own
variant. More recently, several systems have
demonstrated that a message passing system can be
efficiently and portably implemented. It is thus an
appropriate time to try to define both the syntax and
semantics of a core of library routines that will be
useful to a wide range of users and efficiently
implementable on a wide range of computers.

A preliminary draft proposal, known as MPI1,
was put forward by Dongarra, Hempel, Hey, and
Walker in November 1992, and a revised version was
completed in February 1993. MPI1 embodied the
main features that were identified at the Williamsburg
workshop as being necessary in a message passing
standard. Since MPI1 was primarily intended to
promote discussion and “get the ball rolling’’, it
focused mainly on point-to-point communications.
MPI1 brought to the forefront a number of important
standardization issues, but did not include any
collective communication routines and was not
thread-safe.

In November 1992, a meeting of the MPI
working group was held in Minneapolis, at which it
was decided to place the standardization process on

a more formal footing, and to generally adopt the
procedures and organization of the High Performance
FORTRAN Forum. Subcommittees were formed for
the major component areas of the standard, and an
email discussion service established for each. In
addition, the goal of producing a draft MPI standard
by the Fall of 1993 was set. To achieve this goal the
MPI working group met every 6 weeks for two days
throughout the first 9 months of 1993, and presented
the draft MPI standard at the Supercomputing 93
conference in November 1993. These meetings and
the email discussion together constituted the MPI
Forum, membership of which has been open to all
members of the high performance computing
community.

The main advantages of establishing a message-
passing standard are portability and ease-of-use. In a
distributed memory communication environment in
which the higher level routines and/or abstractions
are build upon lower level message passing routines
the benefits of standardization are particularly
apparent. Furthermore, the definition of a message
passing standard, such as that proposed here, provides
vendors with a clearly defined base set of routines
that they can implement efficiently, or in some cases
provide hardware support for, thereby enhancing
scalability.

The goal of the Message Passing Interface
simply stated is to develop a widely used standard
for writing message-passing programs. As such the
interface should establish a practical, portable,
efficient, and flexible standard for message passing.

46 Linux Thane 2006

A complete list of goals follows.

The first task of the MPI Forum was to define
the goals that would guide its subsequent discussions.
Some of these goals (and some of their implications)
were the following.

Q MPI would be a library for writing application
programs, not a distributed operating system.
This goal has implications for resource
management issues.

Q MPI would not mandate thread-safe
implementations, but its specification would
allow them. Thread safety implies that there
can be no notion of a “current” buffer,
message, error code, etc. As the “nodes” in
the network become symmetric
multiprocessors, thread safety becomes
increasingly important in a heterogeneous,
networked environment.

Q MPI would be capable of delivering high
performance on high-performance systems.
Hence, no memory copies would be mandated
by the design. Scalability, combined with
correctness, for collective operations required
that groups be “static”.

Q MPI would be modular, to accelerate the
development of portable parallel libraries.
Modularity has many implications. For
example, all references must be relative to a
module, not the entire program. Hence, process
source/destination must be specified by rank
in a group rather than by an absolute identifier
and context must not be a visible value. There
are many others, some of which are described
below.

Q MPI would be extensible to meet future needs
and developments. This led to an object-
oriented style without a commitment to an
object-oriented language. This approach
required functions to manipulate the objects,
which is one minor reason for the relatively
large number of functions in MPI.

Q MPI would support heterogeneous computing
the (MPI Datatype object allows
implementations to be heterogeneous)
although it would not require that all
implementations be heterogeneous.

Q MPI would require well-defied behavior no
race conditions or avoidable implementation-
specific behavior.

Q Design an application programming interface
(not necessarily for compilers or a system
implementation library).

Q Allow efficient communication: Avoid
memory-to-memory copying and allow
overlap of computation and communication
and offload to communication co-processor,
where available.

Q Allow for implementations that can be used
in a heterogeneous environment.

Q Allow convenient C and Fortran 77 bindings
for the interface. Semantics of the interface
should be language independent.

Q Assume a reliable communication interface:
the user need not cope with communication
failures. Such failures are dealt with by the
underlying communication subsystem.

Q Define an interface that is not too different
from current practice, such as PVM, NX,
Express, p4, etc., and provides extensions that
allow greater flexibility.

Q Define an interface that can be implemented
on many vendor’s platforms, with no
significant changes in the underlying
communication and system software.

Q The interface should be designed to allow for
thread-safety.

Finally, the MPI Forum sought to simplify the
interface by making each approach solve as many
problems as possible. For example, datatypes solve
both heterogeneity and noncontiguous data layouts,
both for messages and for files.

Who Should Use This Standard?

This standard is intended for use by all those
who want to write portable message-passing
programs in Fortran 77 and C. This includes
individual application programmers, developers of
software designed to run on parallel machines, and
creators of environments and tools. In order to be
attractive to this wide audience, the standard must
provide a simple, easy-to-use interface for the basic
user while not semantically precluding the high-
performance message-passing operations available
on advanced machines.

What Platforms Are Targets For Implementa-
tion?

47Linux Thane 2006

The attractiveness of the message-passing
paradigm at least partially stems from its wide
portability. Programs expressed this way may run on
distributed-memory multiprocessors, networks of
workstations, and combinations of all of these. In
addition, shared-memory implementations are
possible. The paradigm will not be made obsolete
by architectures combining the shared and
distributed-memory views, or by increases in network
speeds. It thus should be both possible and useful to
implement this standard on a great variety of
machines, including those “machines” consisting of
collections of other machines, parallel or not,
connected by a communication network.

The interface is suitable for use by fully general
MIMD programs, as well as those written in the more
restricted style of SPMD. Although no explicit
support for threads is provided, the interface has been
designed so as not to prejudice their use. With this
version of MPI no support is provided for dynamic
spawning of tasks.

MPI provides many features intended to
improve performance on scalable parallel computers
with specialized interprocessor communication
hardware. Thus, we expect that native, high-
performance implementations of MPI will be
provided on such machines. At the same time,
implementations of MPI on top of standard Unix
interprocessor communication protocols will provide
portability to workstation clusters and heterogenous
networks of workstations. Several proprietary, native
implementations of MPI, and a public domain,
portable implementation of MPI are in progress at
the time of this writing

What Is Included In The Standard?

The standard includes:

Q Point-to-point communication

Q Collective operations

Q Process groups

Q Communication contexts

Q Process topologies

Q Bindings for Fortran 77 and C

Q Environmental Management and inquiry

Q Profiling interface

What Is Not Included In The Standard?

The standard does not specify:

Q Explicit shared-memory operations

Q Operations that require more operating system
support than is currently standard; for example,
interrupt-driven receives, remote execution, or
active messages

Q Program construction tools

Q Debugging facilities

Q Explicit support for threads

Q Support for task management

Q I/O functions

There are many features that have been
considered and not included in this standard. This
happened for a number of reasons, one of which is
the time constraint that was self-imposed in finishing
the standard. Features that are not included can
always be offered as extensions by specific
implementations. Perhaps future versions of MPI will
address some of these issues.

Fault Tolerance

There are several important issues to consider
when providing a fault notification scheme. For
example, a task might request notification of an event
after it has already occurred. PVM immediately
generates a notify message in response to any such
after-the-fact request. For example, if a “task exit”
notification request is posted for a task that has
already exited, a notify message is immediately
returned. Similarly, if a “host exit”, request is posted
for a host that is no longer part of the virtual machine,
a notify message is immediately returned. It is
possible for a “host add” notification request to occur
simultaneously with the addition of a new host into
the virtual machine. To alleviate this race condition,
the user must poll the virtual machine after the notify
request to obtain the complete virtual machine
configuration. Subsequently, PVM can then reliably
deliver any new “host add” notifies.

The current MPI standard does not include any
mechanisms for fault tolerance, although the
upcoming MPI-2 standard will include a notify
scheme similar to PVM’s. The problem with the MPI-
1 model in terms of fault tolerance is that the tasks
and hosts are considered to be static. An MPI-1
application must be started as a single group of
executing tasks. If a task or computing resource
should fail, the entire MPI-1 application must fail.

48 Linux Thane 2006

This is certainly effective in terms of preventing
leftover or hung tasks. However, there is no way for
an MPI program to gracefully handle a fault.

Why does MPI not guarantee buffering?

MPI does not guarantee to buffer arbitrary
messages because memory is a finite resource on all
computers. Thus, all computers will fail under
sufficiently adverse communication loads. Different
computers at different times are capable of providing
differing amounts of buffering, so if a program relies
on buffering it may fail under certain conditions, but
work correctly under other conditions. This is clearly
undesirable.

Given that no message passing system can
guarantee that messages will be buffered as required
under all circumstances, it might be asked why MPI
does not guarantee a minimum amount of memory
available for buffering. One major problem is that it
is not obvious how to specify the amount of buffer
space that is available, nor is it easy to estimate how
much buffer space is consumed by a particular
program.

Different buffering policies make sense in
different environments. Messages can be buffered at
the sending node or at the receiving node, or both. In
the former case,

Q buffers can be dedicated to one destination in
one communication domain,

Q or dedicated to one destination for all
communication domains,

Q or shared by all outgoing communications,

Q or shared by all processes running at a processor
node,

Q or part of the buffer pool may be dedicated,
and part shared.

Similar choices occur if messages are buffered
at the destination. Communication buffers may be
fixed in size, or they may be allocated dynamically
out of the heap, in competition with the application.
The buffer allocation policy may depend on the size
of the messages (preferably buffering short
messages), and may depend on communication
history (preferably buffering on busy channels).

The choice of the right policy is strongly
dependent on the hardware and software
environment. For instance, in a dedicated
environment, a processor with a process blocked on

a send is idle and so computing resources are not
wasted if this processor copies the outgoing message
to a buffer. In a time shared environment, the
computing resources may be used by another process.
In a system where buffer space can be in paged
memory, such space can be allocated from heap. If
the buffer space cannot be paged, or has to be in
kernel space, then a separate buffer is needed. Flow
control may require that some amount of buffer space
be dedicated to each pair of communicating
processes.

The optimal strategy strongly depends on
various performance parameters of the system: the
bandwidth, the communication start-up time,
scheduling and context switching overheads, the
amount of potential overlap between communication
and computation, etc. The choice of a buffering and
scheduling policy may not be entirely under the
control of the MPI implementor, as it is partially
determined by the properties of the underlying
communication layer. Also, experience in this arena
is quite limited, and underlying technology can be
expected to change rapidly: fast, user-space
interprocessor communication mechanisms are an
active research area.

Attempts by the MPI Forum to design
mechanisms for querying or setting the amount of
buffer space available to standard communication led
to the conclusion that such mechanisms will either
restrict allowed implementations unacceptably, or
provide bounds that will be extremely pessimistic
on most implementations in most cases. Another
problem is that parameters such as buffer sizes work
against portability. Rather then restricting the
implementation strategies for standard
communication, the choice was taken to provide
additional communication modes for those users that
do not want to trust the implementation to make the
right choice for them.

Heterogeneous Computing with MPI

Heterogeneous computing uses different
computers connected by a network to solve a problem
in parallel. With heterogeneous computing a number
of issues arise that are not applicable when using a
homogeneous parallel computer. For example, the
computers may be of differing computational power,
so care must be taken to distribute the work between
them to avoid load imbalance. Other problems may
arise because of the different behavior of floating
point arithmetic on different machines. However, the
two most fundamental issues that must be faced in

49Linux Thane 2006

heterogeneous computing are,

Q incompatible data representation,

Q interoperability of differing implementations of
the message passing layer.

Incompatible data representations arise when
computers use different binary representations for
the same number. In MPI all communication routines
have a datatype argument so implementations can
use this information to perform the appropriate
representation conversion when communicating data
between computers.

Interoperability refers to the ability of different
implementations of a given piece of software to work
together as if they were a single homogeneous
implementation. A interoperability prerequisite of
interoperability for MPI would be the standardization
of the MPI’s internal data structures, of the
communication protocols, of the initialization,
termination and error handling procedures, of the

implementation of collective operations, and so on.
Since this has not been done, there is no support for
interoperability in MPI. In general, hardware-specific
implementations of MPI will not be interoperable.
However it is still possible for different architectures
to work together if they both use the same portable
MPI implementation.

References

1. Marc Snir, Steve Otto, Steven Huss-Lederman,
David Walker, Jack Dongarra, MPI: The
Complete Reference.

2. William Gropp and Ewing Lusk. Fault Tolerance
in MPI Programs.

3. G. A. Geist, J. A. Kohl, P. M. Papadopoulos. PVM
and MPI: A Comparison of Features. May 30,
1996.

4. William Gropp and Ewing Lusk. PVM and MPI
Are Completely Different.

50 Linux Thane 2006

PVM and MPI : A Comparison
Santosh Kumar Soni1, Sagar Kotekar-Patil2 , Hiren Dand3

1. Lecturer, K. C. College, Mumbai – 20
2. Lecturer, D. G. Ruparel College, Mumbai – 16

3. Lecturer, Mulund College of Commerce, Mumbai – 80

Abstract:
This paper compares PVM and MPI, two systems for programming clusters, pointing out the differences
in their origins, the goals of the two systems, and the relationship in terms of similarities and dissimilarities
between their specifications and their implementations. It also points out the situations where one API
may be favored over the other, enabling programmers to assess the needs of their applications and
decide accordingly.

PVM is better when applications will be run over heterogeneous networks. It has good interoperability
between different hosts. PVM allows the development of fault tolerant applications that can survive
host or task failures. Because the PVM model is built around the virtual machine concept (not present
in the MPI model), it provides a powerful set of dynamic resource manager and process control functions.

MPI is expected to be faster within a large multiprocessor. It has many more point-to-point and collective
communication options than PVM. This can be important if an algorithm is dependent on the existence
of a special communication option. MPI also has the ability to specify a logical communication topology.

Each API has its unique strengths and this will remain so into the foreseeable future. One area of future
research is to come up with a hybrid model, a programming environment that allows access to the best
features of both, i.e., virtual machine features of PVM and the message passing features of MPI.

Introduction

The recent emergence of the MPI (Message
Passing Interface) specification has caused many
programmers to wonder whether they should write
their applications in MPI or use PVM (Parallel Virtual
Machine). PVM is the existing de facto standard for
distributed computing and MPI is being touted as
the future message passing standard. A related
concern of users is whether they should invest the
time and effort to rewrite their existing PVM
applications in MPI.

In this paper we address these questions by
comparing the features supplied by PVM and the
features supplied by MPI and showing under which
situations one API might be favored over another.
Programmers can then assess the needs of their
application and decide accordingly. Also, in this paper
we have focused on a few of the many similarities
and dissimilarities between MPI and PVM. We have
shown that the differences between MPI and PVM
remain profound, despite some convergence.

Background

Some background material will help better
illustrate PVM and MPI –

What is PVM?

The impetus for developing PVM was that
developers needed a framework to explore the
Heterogeneous Distributed Computing and so
developed the concept of a Parallel Virtual Machine.

� PVM (Parallel Virtual Machine) is a portable
message-passing system. It is designed to link
separate host machines to form a “virtual
machine” which is a single, manageable
computing resource. This virtual machine is
portable to a wide variety of architectures,
including PCs, workstations, multiprocessors,
and supercomputers.

In terms of background, PVM is a by production
of an ongoing heterogeneous network computing
research project. The general goals of this project
are to develop solutions for the heterogeneous
concurrent computing and to satisfy the demand
for higher performance, lower cost, and sustained
productivity.

� PVM Overview – PVM transparently handles all
message routing, data conversion, and task
scheduling across a network of incompatible
computer architectures. The programming
interface is deliberately straightforward:

51Linux Thane 2006

� The user writes an application as a collection of
cooperating tasks.

� Tasks access PVM resources through a library
of standard interface routines.

� These routines allow the initiation and
termination of tasks across the network as well
as communication and synchronization between
tasks.

Owing to its virtual machine concept and its
simple but complete programming interface, the
PVM system has gained widespread acceptance in
the high performance scientific computing
community.

� PVM supported Architectures/ OSs / Languages
–

� Architectures/OSs – PVM software is very
portable. It has been used on all the following
systems. The virtual machine can be composed
of a mixture of any of these computers -

� Workstations and Shared-memory Servers -

� Parallel Computers -

Cray YMP, T3D, T3E, Cray 2; IBM SP2, 3090;
NEC SX-3; TMC CM5; Intel Paragon; Amdahl;
Convex Exemplar.

� Languages -

The PVM system currently supports C, C++, and
Fortran languages. Its programming library
(libpvm3.a) is written in C and directly supports
C and C++ applications. And, about the Fortran
library (libfpvm3.a), is a set of “wrapper”
functions that conform to the Fortran calling
conventions.

What is MPI?

The impetus for developing MPI was that each
Massively Parallel Processor (MPP) vendor was
creating their own message-passing API.

MPI stands for Message Passing Interface. The
goal of MPI, simply stated, is to develop a widely
used standard for writing message – passing
programs. As such the interface attempts to establish
a practical, portable, efficient, and flexible standard
for message passing.

In designing MPI the MPI Forum sought to
make use of the most attractive features of a number
of existing message passing systems, rather than
selecting one of them and adopting it as the standard.
Thus, MPI has been strongly influenced by work at
the IBM T. J. Watson Research Center, Intel’s NX/2,
Express, nCUBE’s Vertex, p4, and PARMACS. Other
important contributions have come from Zipcode,
Chimp, PVM, Chameleon, and PICL.

The main advantages of establishing a message-
passing standard are portability and ease-of-use. In a
distributed memory communication environment in
which the higher level routines and/or abstractions
are build upon lower level message passing routines
the benefits of standardization are particularly
apparent. Furthermore, the definition of a message
passing standard provides vendors with a clearly
defined base set of routines that they can implement
efficiently, or in some cases provide hardware support
for, thereby enhancing scalability.

Therefore, it is not difficult for us to know that
there will exist different features between them (PVM
and MPI) because of their different design issues.

Features Comparison -

This paper compares PVM and MPI with
respect to the following features –

Pentium, Duals and
Quads

Win95, 98, NT 4.0, Linux, Solaris,
SCO, NetBSD, FreeBSD

MAC NetBSD

Amiga NetBSD

SUN3, SUN4, SPARC Ultra
SPARC

Sun OS, Solaris 2.x

IBM RS6000, J30 AlX 3.x, AlX 4.x
HP9000 Hpux

DEC Alpha, Pmax, Microvax OSF, NT – Alpha
SGI IR IS 5.x, IR IS 6.x

Features PVM MPI
Portability Yes Yes
Interoperability Yes No
Fault Tolerance Yes No
Process Control Yes MPI-2: Yes
Resource Control Dynamic Static
Message – Passing Topology No Yes
Message Handlers Yes Yes

52 Linux Thane 2006

What is not different (similarities) –

Despite their differences, PVM and MPI
certainly have features in common. In this section,
we review some of the similarities and, in the process,
correct some common misconceptions about the MPI
specification. In most cases these misconceptions
arise because of confusion between specification and
implementation, which will be covering in the
subsequent section.

� Portability - Both PVM and MPI are portable;
the specification of each is machine independent,
and implementations are available for a wide
variety of machines, particularly those likely to
appear in clusters.

Both PVM and MPI had portability as an
original goal. As we have seen, MPI’s very strict
adherence to this principle prevented it from having
some features desirable on workstation networks
precisely because they could not be implemented in
all environments. PVM, defined primarily by a single
implementation for workstation networks, has more
freedom to add features appropriate for that
environment, but at the cost of making some PVM
programs not portable to more restrictive
environments.

� Heterogeneity – Once a system is portable, the
issue of homogeneity can be addressed. Can two
processes on different machine architectures
communicate with one another despite
differences in byte ordering in memory or even
word length? To this end PVM provides the pvm
pack/unpack functions and the datatype
arguments to pvm send/recv; MPI does the same
with its more general MPI Datatype argument
to many routines. Of course, some
implementations of MPI, particularly those from
hardware vendors, may not be used in a
heterogeneous environment, but the MPI
specification is designed to encourage
heterogeneous implementations, and both the
MPICH and LAM implementations support
heterogeneous environments.

Both MPI and PVM permit different processes
of a parallel program to execute different executable
binary files. (This would be required in a
heterogeneous implementation, in any case.) That is,
both PVM and MPI support MIMD programs as well
as SPMD programs, although again some
implementations may not do so, and launching
MIMD programs may be less convenient than

launching SPMD programs. Both MPICH and LAM
support MIMD programming.

� Process Control – Process control refers to the
ability to start and stop tasks, to find out which
tasks are running, and possibly where they are
running. PVM contains all of these capabilities.
In contrast MPI-1 has no defined method to start
a parallel application, but MPI-2 will contain
functions to start a group of tasks and to send a
kill signal to a group of tasks (and possibly other
signals as well).

� Message Handler – User-level message handlers
provide an extensible mechanism for building
event-driven codes that easily co-exist with
traditional messaging. Both PVM 3.4 and MPI-
2 will have user-level message handlers. A
program may register a handler function so that
when a specified message arrives at a task, the
function is executed.

What is different (dissimilarities) –

Major feature differences between MPI and PVM –

I. Interoperability – This term refers to the
possibility of communicating among processes linked
with two completely different implementations.

Heterogeneity is becoming increasingly
important for high performance computing.
Massively parallel processors appear to be a dying
breed, leading scientists with serious computational
needs to look towards clusters of smaller
multiprocessors connected by new high-speed
networks. Many organizations already use a variety
of different computing systems in the form of
different personal computers or workstations on their
employees’ desks. Integrating these desktop machines
and utilizing their unused cycles can be an effective
way of obtaining reasonable computational power.
Parallel software systems therefore need to
accommodate execution on many different vendor
platforms.

The MPI interface was developed with the
intent of encompassing all of the message-passing
constructs and features of various MPP and
networked clusters so that programs would execute
on each type of system. The portability achieved by
MPI means that a program written for one
architecture can be copied to a second architecture,
compiled and executed without modification.

PVM also supports this level of portability, but
expands the definition of portable to include

53Linux Thane 2006

interoperable. PVM programs similarly can be copied
to different architectures, compiled and executed
without modification. However, the resulting PVM
executables can also communicate with each other.
In other words, an MPI application can run, as a
whole, on any single architecture and is portable in
that sense. But a PVM program can be ported
heterogeneously to run cooperatively across any set
of different architectures at the same time (i.e.,
interoperate). While the MPI standard does not
prohibit such heterogeneous cooperation, it does not
require it. Nothing in the MPI standard describes
cooperation across heterogeneous networks and
architectures. And there is no impetus for one vendor
to make its MPI implementation slower in order to
allow a user to use another vendor’s machine. None
of the existing MPI implementations can interoperate.

PVM and MPI also differ in their approach to
language interoperability. In PVM, a C program can
send a message that is received by a Fortran program
and vice-versa. In contrast, a program written in C is
not required by the MPI standard to communicate
with a program written in Fortran, even if executing
on the same architecture. This restriction occurs
because C and Fortran support fundamentally
different language interfaces, causing difficulty in
defining a consistent standard interface that covers
both. The MPI decision was to not force the two
languages to interoperate.

II.Virtual Machine - PVM is built around the
concept of a virtual machine which is a dynamic
collection of (potentially heterogeneous)
computational resources managed as a single parallel
computer. The virtual machine concept is
fundamental to the PVM perspective and provides
the basis for heterogeneity, portability, and
encapsulation of functions that constitute PVM.

It is the virtual machine concept that has
revolutionized heterogeneous distributed computing
by linking together different workstations, personal
computers and massively parallel computers to form
a single integrated computational engine. In contrast,
MPI has focused on message-passing and explicitly
states that resource management and the concept of
a virtual machine are outside the scope of the MPI (1
and 2) standard.

a. Process Control – As stated earlier, MPI-1
has no defined method to start a parallel application
(whereas, MPI-2 will support).

b. Resource Control – In terms of resource
management, PVM is inherently dynamic in nature.

Computing resources, or hosts, can be added or
deleted either from a system console or even from
within the user’s application Allowing applications
to interact with and manipulate their computing
environment provides a powerful paradigm for load
balancing, task migration, and fault tolerance. The
virtual machine provides a framework for
determining which tasks are running and supports
naming services so that independently spawned tasks
can find each other and cooperate.

Another aspect of virtual machine dynamics
relates to efficiency. User applications can exhibit
potentially changing computational needs over the
course of their execution. Hence, a message-passing
infrastructure should provide flexible control over
the amount of computational power being utilized.
For example, consider a typical application which
begins and ends with primarily serial computations,
but contains several phases of heavy parallel
computation. A large MPP need not be wasted as part
of the virtual machine for the serial portions, and
can be added just for those portions when it is of
most value. Likewise, consider a long-running
application in which the user occasionally wishes to
attach a graphical front-end to view the computation’s
progress. Without virtual machine dynamics, the
graphical workstation would have to be allocated
during the entire computation . MPI lacks such
dynamics and is, in fact, specifically designed to be
static in nature to improve performance. There is
clearly a trade-off in flexibility and efficiency for
this extra margin of performance.

c. Message – Passing Topology – Although
MPI does not have a concept of a virtual machine.
MPI does provide a higher level of abstraction on
top of the computing resources in terms of the
message-passing topology. In MPI a group of tasks
can be arranged in a specific logical interconnection
topology. Communication among tasks then takes
place within that topology with the hope that the
underlying physical network topology will
correspond and expedite the message transfers. PVM
does not support such an abstraction, leaving the
programmer to manually arrange tasks into groups
with the desired communication organization.

III. Fault Tolerance – There are several
important issues to consider when providing a fault
notification scheme. For example, a task might
request notification of an event after it has already
occurred. PVM immediately generates a notify
message in response to any such after-the-fact

54 Linux Thane 2006

request. For example, if a “task exit” notification
request is posted for a task that has already exited, a
notify message is immediately returned. Similarly,
if a “host exit”, request is posted for a host that is no
longer part of the virtual machine, a notify message
is immediately returned. It is possible for a “host add”
notification request to occur simultaneously with the
addition of a new host into the virtual machine. To
alleviate this race condition, the user must poll the
virtual machine after the notify request to obtain the
complete virtual machine configuration.
Subsequently, PVM can then reliably deliver any new
“host add” notifies.

The current MPI standard does not include any
mechanisms for fault tolerance, although the
upcoming MPI-2 standard will include a notify
scheme similar to PVM’s. The problem with the MPI-
1 model in terms of fault tolerance is that the tasks
and hosts are considered to be static. An MPI-1
application must be started as a single group of
executing tasks. If a task or computing resource
should fail, the entire MPI-1 application must fail.
This is certainly effective in terms of preventing
leftover or hung tasks. However, there is no way for
an MPI program to gracefully handle a fault.

IV. Name Service – It is often desirable for
two programs to start independently and discover
information about each other. A common mechanism
is for each of the programs to key on a “well-known
name” to look up information in a database. A
program that returns information about a requested
name is called a name server.

PVM is completely dynamic. Hosts may be
added to and deleted from the virtual machine.
Processes may start, run to completion and then exit.
The dynamic nature of PVM makes name service
very useful and convenient. In PVM 3.4, the
distributed set of PVM daemons has added
functionality to allow them to perform name server
functions. In comparison, MPI-1 supplies no
functionality that requires a name server. MPI-2
proposes to add functions to allow independent
groups of processes to synchronize and create an
inter-communicator between them.

Top ten reasons to prefer MPI over PVM –

1. MPI has more than one freely available, quality
implementation.

There are at least LAM and MPICH. The choice
of development tools is not coupled to the
programming interface.

2. MPI defines a 3rd party profiling mechanism.

A tool builder can extract profile information
from MPI applications by supplying the MPI
standard profile interface in a separate library,
without ever having access to the source code
of the main implementation.

3. MPI has full asynchronous communication.

Immediate send and receive operations can fully
overlap computation.

4. MPI groups are solid, efficient, and
deterministic.

Group membership is static. There are no race
conditions caused by processes independently
entering and leaving a group. New group
formation is collective and group membership
information is distributed, not centralized.

5. MPI efficiently manages message buffers.

Messages are sent and received from user data
structures, not from staging buffers within the
communication library. Buffering may, in some
cases, be totally avoided.

6. MPI synchronization protects the user from 3rd
party software.

All communication within a particular group
of processes is marked with an extra
synchronization variable, allocated by the
system. Independent software products within
the same process do not have to worry about
allocating message tags.

7. MPI can efficiently program MPP and clusters.

A virtual topology reflecting the communication
pattern of the application can be associated with
a group of processes. An MPP implementation
of MPI could use that information to match
processes to processors in a way that optimizes
communication paths.

8. MPI is totally portable.

Recompile and run on any implementation.
With virtual topologies and efficient buffer
management, for example, an application
moving from a cluster to an MPP could even
expect good performance.

9. MPI is formally specified.

Implementations have to live up to a published
document of precise semantics.

55Linux Thane 2006

10. MPI is a standard.

Its features and behavior were arrived at by
consensus in an open forum. It can change only
by the same process.

11. Performance depends on the hardware.

However, MPI equipped with more high
performance message passing functions than
PVM.

12.Number of functions

In the LAM, MPI has 130 functions while PVM
has 38 functions.

13.Portability between PVM and MPI

PVM -> MPI is easy. MPI -> PVM is difficult.

Implementation and Definition

One common confusion in comparing MPI with
PVM comes from comparing the specification of MPI
with the implementation of PVM. Standards
specifications tend to specify the minimum level of
compliance, while any implementation offers more
functionality. In the MPI Forum, many such “added-
value” features are listed as expected of a “high-
quality implementation”. Error handling and recovery
are a good example. Standards tend not to mandate
specific behavior on errors, other than to list error
indicator values. The expectation is that high-quality
implementations will give users what they expect.

Specific implementations can easily define their
individual handling of errors. Thus, most MPI
implementations do not simply abort when an error
is detected; just as the PVM implementation does,
they attempt to provide a useful error indication and
allow the user to continue. Specifically, in any system,
there are recoverable and nonrecoverable errors. An
example of a recoverable error is an illegal argument
to a routine, such as a null-pointer or an out-of-range
value. A nonrecoverable error is one where the
program may not be able to continue. In many
applications, accessing an invalid address or
attempting to execute an invalid or privileged
instruction is nonrecoverable. The MPI standard does
not specify which errors are recoverable, though there
has been some discussion in this direction. This is
an example of the determination of the MPI Forum
to maintain maximum portability—mandating any
specific behavior would limit the portability of MPI.
Note that even for PVM, some systems provide a
less “recoverable” environment than others. For

example, systems with proprietary interconnects may
kill all processes when any one exits.

Another source of confusion involves features
of a particular implementation that are exposed to
the programmer. Consider the pvm reg tasker routine
that allows a process to indicate to PVM that it, rather
than fork/exec, should be used to start tasks. This is
an powerful hook to allow extension of the PVM
implementation by special applications, such as
debugger servers and batch schedulers. MPI, as a
standard, has no such object, but specific MPI
implementations can and do provide similar services;
for example, the MPICH implementation of MPI
provides a process startup hook used by the
TotalView debugger. The MPI standard does not
specify how implementations are to provide this
service; as a standard, it should not. At the same time,
the experience with TotalView has defined an
interface that MPI implementations (not just MPICH)
can use, allowing any debugger to access this
information. We note that some PVM
implementations for massively parallel processors
(MPPs) also do not provide the pvm reg tasker
routine. This is an example of the freedom of PVM
to provide features only in some environments. As a
standard, MPI does not have that freedom. If the MPI
standard had mandated such a routine, any MPI
implementation would have to provide it. Instead,
MPI’s explicit goals mandated that it choose
portability over certain kinds of functionality.

When we compare implementations rather than
an implementation of PVM with the MPI standard,
the gap in this type of functionality narrows. For
example, MPICH, rather than MPI, does provide a
way for debuggers like TotalView to access to internal
MPICH state on the message queues. Many users
want this information, but it raises an interesting
issue: How does one define a standard for the internal
state of an implementation? For any implementation
this can be done, but different implementations may
have different internal states. For example, one
optimization for communication has the process
issuing an MPI RECV send a message to the expected
source of the message, allowing the sender to deliver
the message directly into the receiver’s memory [21].
Should this information be presented to the user?
Other implementation choices might eliminate some
queues altogether or make it more difficult to find
all pending communication operations; in fact, in the
MPICH implementation, there is no send queue
unless the system has been configured and built to
support the message queue service. By not specifying

56 Linux Thane 2006

a model of the internals of an MPI implementation,
such as defining a “message queue” does, the MPI
standard allows MPI implementations to make
tradeoffs between the performance and functionality
that the users want.

Future research – PVMPI

The University of Tennessee and Oak Ridge
National Laboratory have recently begun
investigating the feasibility of merging features of
PVM and MPI. The project is called PVMPI and
involves creating a programming environment that
allows access to the virtual machine features of PVM
and the message passing features of MPI.

PVMPI would perform three symbiotic
functions –

� It would use vendor implementations of MPI
when available on multiprocessors.

� It would allow applications to access PVM’s
virtual machine resource control and fault
tolerance.

� It would transparently use PVM’s network
communication to transfer data between
different vendor’s MPI implementations
allowing them to interoperate within the larger
virtual machine.

Conclusion

The recent publicity surrounding MPI has
caused programmers to wonder if they should use
the existing de facto standard, PVM, or whether they
should shift their codes to the MPI standard. In this
paper we compared the features of the two APIs and
pointed out situations where one is better suited than
the other.

If an application is going to be developed and
executed on a single MPP, then MPI has the
advantage of expected higher communication
performance. The application would be portable to
other vendor’s MPP so it would not need to be tied
to a particular vendor. MPI has a much richer set of
communication functions so MPI is favored when
an application is structured to exploit special
communication modes not available in PVM
 The most often cited example is the non-blocking
send.

Some sacrifices have been made in the MPI
specification in order to be able to produce high
communication performance. Two of the most

notable are the lack of interoperability between any
of the MPI implementations, that is, one vendor’s
MPI cannot send a messages to another vendor’s
MPI. The second is the lack of ability to write fault
tolerant applications in MPI. The MPI specification
states that the only thing that is guaranteed after an
MPI error is the ability to exit the program.

Because PVM is built around the concept of a
virtual machine, PVM has the advantage when the
application is going to run over a networked
collection of hosts, particularly if the hosts are
heterogeneous. PVM contains resource management
and process control functions that are important for
creating portable applications that run on clusters of
workstations and MPP.

The larger the cluster of hosts, the more
important PVM’s fault tolerant features become. The
ability to write long running PVM applications that
can continue even when hosts or tasks fail, or loads
change dynamically due to outside influence, is quite
important to heterogeneous distributed computing.

Programmers should evaluate the functional
requirements and running environment of their
application and choose the API that has the features
they need.

References

1 PVM : Parallel Virtual Machine. A User’s Guide
and Tutorial for Networked Parallel Computing.
Al Geist, Adam Beguelin, Jack Dongarra.

2 MPI – The Complete Reference. Marc Snir, Steve
Otto, Steven Huss-Lederman, David Walker,
Jack Dongarra.

3 William Gropp, Ewing Lusk. Goals Guiding
Design : PVM and MPI.

4 G. A. Geist, J. A. Kohl, P. M. Papadopoulos. PVM
and MPI : A Comparison of Features. May 30,
1996.

5 William Gropp, Ewing Lusk. PVM and MPI are
Completely Different.

57Linux Thane 2006

Cost of Software Corporate Users’ Perspective
Prof. Ram Verma,

V. N. Bedekar Institute of Management Studies and Research

Abstract
Information technology enjoys the prominent place in today’s human activities. In business sector, the
importance of IT has increased leaps and bounds. It has tremendously enhanced the velocity of change
in every sphere of human life. Computer savvy is a common word now days. In the present business
environment one has got to be computer savvy to maintain and improve performance.

When we think of computer, we come across two important peripherals called hardware and software.
Whereas hardware is a visible part of the machine, software is generally invisible except that it is in
written form. In a sense the software i.e. invisible part is more important than the visible part i.e.
hardware since it involves a lot of interface as well as interaction with the user. Further, in terms of
costs also, software always supersedes hared ware. The purpose of this article is to look into various
cost factors that have significant impact on the decisions relating to the acquisition of a software. The
discussion will be confined to the process of ascertaining the cost of sources of soft ware i.e. open
source and closed source.

Software

Computer software is a program that enables a
computer to perform desired function. It is termed
as operating system in general terminology. Again, a
soft ware or operating system is further segregated
into system software and application software. For
example, Windows, Linux are system softwares
whereas ‘Word’ , ‘Writer’ are application softwares.

Sources of softwares

Softwares are generally available from two
sources closed sources and open sources.

a) Closed source software

Closed source software (i.e. Microsoft
Windows and Office) is developed by a single person
or company. Only the final product that is run on
your computer is made available, while the all
important source code or recipe for making the
software is kept a secret. This software is normally
copyright or patented and is legally protected as
intellectual property. The owner of the software
distributes the software directly or via vendors to you
the end user. You cannot legally give it away, copy it
or modify it in any way unless you have a special
license or permission to do so.

Proprietary software is software that has
restrictions on using and copying it, usually enforced
by a proprietor. The prevention of use, copying, or
modification can be achieved by legal or technical

means. Technical means include releasing machine-
readable binaries only, and withholding the human-
readable source code. Legal means can involve
software licensing, copyright and patent law.
Proprietary software can be sold for money as
commercial software or available at zero-price as
freeware.

b)Open source software

Open Source software is almost the opposite
(i.e. Redhat Linux, Open Office) and is free to use
and distribute provided that certain conditions are
met.

Free software, as defined by the Free Software
Foundation, is software which can be used, copied,
studied, modified and redistributed without
restriction. Freedom from such restrictions is central
to the concept. The usual way for software to be
distributed as free software is for the software to be
licensed to the recipient with a free software license
(or be in the public domain), and the source code of
the software to be made available (for a compiled
language).

Criteria of selecting a software source

When we come across two types of softwares
the question arises which source to select and why.
There is no straight way answer to such questions.
One has to go through the process of looking into
the comparative merits and demerits of both the

58 Linux Thane 2006

options. Broadly, there are two aspects to be
considered in this regard:-

A)Comparative intangible factors of software

B)Cost of software

A) Comparative intangible factors:

 The following table gives a comparative view
of closed source software and open source software:-

Comparative intangible factors of software

From the comparison it appears that profit
motive is predominant in the development and
distribution of closed source software and
accordingly all parameters are business oriented. In
case of open source software, social freedom
dimension is in the forefront whereas profit motive
is relegated to the back side. All other variation in

functionalities between two type of softwares spring
forth from the difference in basic approach i.e.
business approach and social approach.

Once we are clear about various comparative
merits and demerits of close and open sources, the
next step in decision making process relates to the
cost of software.

B. Cost of software

In this article we are trying to ascertain the cost
of software from the perspective of corporate users
since because of their large requirements such users
have to make considerable investment in softwares
which individual users may not require.

While proceeding to assess the cost of a
software, following points need to considered -

1. What constitutes cost?

2. Cost to whom?

Cost of a software includes all the present non
recurring investment as well as recurring future
expenditure. Cost to whom means the cost of
software in the hands of an user. This leads us to the
concept of total cost of owning a soft ware or total
cost of ownership. The concept of TCO was
developed by a research firm Gartner in the late 1980.

The concept of total cost of ownership (TCO)

As per traditional costing approach, the cost of
software may consist of cost of acquisition only but
that does not reflect the realistic cost in the sense
that a lot of expenditure has to be incurred even after
a soft ware has been acquired. Normally, the
following activities attract post acquisition costs:-

z installation of software

z making the software operational

z operating costs

z support services costs

z upgradation costs

z retirement costs

In fact, the post acquisition costs form a large
chunk of the total cost. Therefore, while evaluating
a software, all these costs have to be logically
considered in order to make TCO realistic from the
point of view of investment. More over, the product
life cycle in IT is generally of shorter duration and
this entails further costs in terms of upgradation/

CLOSED SOURCE
SOFTWARE

OPEN SOURCE
SOFTWARE

Totally business
oriented approach,
profit motive is
predominant..

Strongly social
oriented approach.
Contribution to
society is
predominant.

Owner prevails over
user.

User is free to act.

Source code not
available to user.

Source code open to
all.

Software is legally
protected as
copyright or patent.

Software is freely
downloadable.
Software and authors
legally protected.

Support services
available.

Support services not
available.

Security risk is high. Security risk is low.

Buyer not allowed to
distribute it further.

User can further
distribute it.

Software is available
against payment only.

Software is available
free or with a nominal
fee.

Distribution directly
by owner or through
vendor.

User can download it
directly.

59Linux Thane 2006

Cost of:
● Net work equipment
● Maintenance
● Licenses fees
● End user support
● Shadow support
● Down time
● Supplies & materials
● Upgradation

Cost of:
● Acquisition
● Deployment
● Operation
● Support
● Utilities

Total cost of ownership

Software life cycle

Direct costs Indirect costs

retirements etc. Therefore, product life cycle is a
critical aspect and its impact on TCO can not be
ignored altogether. The following chart shows
various elements of costs in relation to TCO as well
as product life cycle:

Further,TCO consists of intangible factors also.
Some of the intangible costs are difficult to be
quantified in precise terms. For example; cost of time
spent on solving computer related problem, cost of
security related risks. Yet such intangible factors have
a significant bearing on the TCO.

From the above it is observed that a firm must
consider the investment in IT from the TCO
perspective in order to have realistic picture of the
non-recurring as well as recurring expenditure. This
will help to implement budgetary process effectively.

Costing methodology

As we have seen above that traditional costing
approach does not give realistic view of the total cost
of ownership because of short product life cycle, the
concept of life cycle costing will be more appropriate
in such case. The methodology of cost computation
will be as follows:

a) Determine the probable life of the software in
terms of years.

b) Identify one time initial costs i.e. cost of
acquisition,deployment etc.

c) Identify all future costs i.e. operations, support,
utilities, upgradation etc.

d) Discount all future costs in terms of their present
value.

e) Total up all initial costs and discounted future
costs to get TCO.

Comparative cost of acquisition of software

Based on the above approach, an attempt has
been made hereunder to compare the cost of software
between closed source and open source. For the
closed source Microsoft Windows has been taken as
a base, whereas Linux Open Office forms the base
for the open source. Various assumptions for
computations are mentioned in detail in Annexure -
1. For the sake of simplicity, life cycle and future
costs of both the products have been assumed to be
the same. Thus the comparison reflects only the initial
investment required for the acquisition of the
software.

 The analysis is based on a typical factory
having an annual turnover of Rs.200 crore with an
employee strength of 150 at a single location. The
computations are based on the requirement of 100
desktops.

Comparative cost of acquisition

z please refer Annexure 1 and Annexure 2.

Decision making

As stated in para 4 above, the decision process
calls for the consideration of two factors .i.e.
intangible factors and tangible factors i.e. cost factors.
The relative merits of open source as mentioned in
para 4(a) clearly outweigh its demerits as compared
to closed source considered along with the cost factor
that heavily leans in favor of the Open Source.

This may be only a tip of iceberg. Real life
situations will definitely call for the computation of
the entire cost of ownership or TCO to support the
decision making process. Alongside, the factors such
as the mindset of employees, resistance to change
and the resulting cost aspects have also to be looked
into to make effective decision for investment in IT.

1 Number of
desktops

100 100

2 Operating
system

Microsoft
Windows

Linux Open
Office

3 Applications Windows based Linux based

Sr.
no.

Particulars Closed source
software

Open
source

software

4 Cost of
acquisition*

42.37 lakh 0.50 lakh

60 Linux Thane 2006

Conclusion

Management of costs is vital for the growth
and survival of any organization. IT is one of the
important areas where an organization has
considerable scope for managing costs in terms of
both the present and future environment. With the
emergence of the concept of the total cost of
ownership, the total outgo in IT can be estimated
realistically to a considerable extent. In today’s
widely distributed IT computing environment, it
becomes more pertinent to understand TCO in order
to effectively evaluate all the deployment
alternatives. Along with this, the comparative analysis
of investment requirements from both the options i.e.
closed source as well as open source is also quite
essential to save on the opportunity costs and thus
rationalize the utilization of the financial resources.

References

1. http://www-1.ibm.com/linux/RFG-LinuxTCO-
vFINAL-Jul2002.pdf

2. h t t p : / / w w w . p h p t r . c o m / a r t i c l e s /
article.asp?p=24404&rl=1

3. http://www.opensource.org/docs/definition.php

4. h t t p : / / o p e n s o u r c e . m i t . e d u / p a p e r s /
cominomanenti.pdf#search=%22why%20closed

%20source%22

5. Shri Rajagopal Iyer

6. Shri Kastubh Kale

Details of cost information & assumptions

1.Cost of operating system:

A) Common to all depts

Operating system Approx. cost (Rs.)

STD MS Office 10500/- per seat

XP Professional 7200/- per seat

Prof. MS Office 16000/- per seat

B) Cost of data base: Rs.11000/- per user (Oracle)

C) R & D dept. (additional sotware)

Auto CAD : Rs. 121000/- each seat

Photo shop : Rs.36000/-

Photo shop suite (one) : Rs. 50000/-

2.Cost of server

a) Fixed cost : Rs. 36000/- (with 5 user licenses)

b) For each additional sheet: Rs. 2100/- extra

c) Total cost for 20 seats : Rs. 68000/- (Rs.
36500+Rs.2100*15)

3.Requirements of closed source operating system
in a typical factory

Assumptions

A. General information
a) Annual turn over: Rs. 200 crores

b) Single location
c) No. of desk tops: 100
d) No. of employees: 150

B. specific information

1.Distribution of department-wise desktops:

Q Accounts dept. : 10

Q Purchase and stores : 15

Q Shop floor : 20

Q Adm. and HRD : 10

Q Sales : 20

Q R & D : 10

Q Others : 15

 Total desktops 100

2. Distribution of servers

Q Shop floor: one

Q Adm. and HRD: one

Q R& D : one

Q Accounts/sales / Purchases:one

Q Total servers : four

3. Data base requirement

Distributed as per number of seats department
wise.

61Linux Thane 2006

So
ftw

ar
e\

 D
ep

ts
.

Ac
co

un
ts

A
dm

.&
 H

R
O

rg
.w

id
e

O
th

er
s

P
ur

ch
as

e
R&

D
S

al
es

Sh
op

 F
lo

or
To

ta
l R

es
ul

t
A

nt
ivi

ru
s

S
um

 -
S

ea
ts

10
6

10
6

S
um

 -
A

m
t.

(R
s.

)
12

72
00

12
72

00
A

ut
oC

A
D

S
um

 -
S

ea
ts

5
5

S
um

 -
A

m
t.

(R
s.

)
60

50
00

60
50

00
C

A
L

S
um

 -
S

ea
ts

10
10

15
15

10
15

15
90

S
um

 -
A

m
t.

(R
s.

)
21

00
0

21
00

0
31

50
0

31
50

0
21

00
0

31
50

0
31

50
0

18
90

00
D

.B
. C

lie
nt

S
um

 -
S

ea
ts

10
10

15
15

10
20

20
10

0
S

um
 -

A
m

t.
(R

s.
)

11
00

00
11

00
00

16
50

00
16

50
00

11
00

00
22

00
00

22
00

00
11

00
00

0
M

S
 E

xc
ha

ng
e

S
um

 -
S

ea
ts

1
1

S
er

ve
r

S
um

 -
A

m
t.

(R
s.

)
28

00
0

28
00

0
O

ff.
 P

ro
fe

ss
io

na
l

S
um

 -
S

ea
ts

3
3

5
5

3
5

3
27

S
um

 -
A

m
t.

(R
s.

)
48

00
0

48
00

0
80

00
0

80
00

0
48

00
0

80
00

0
48

00
0

43
20

00
O

ff.
 S

TD
.

S
um

 -
S

ea
ts

7
7

10
10

7
15

7
63

S
um

 -
A

m
t.

(R
s.

)
73

50
0

73
50

0
10

50
00

10
50

00
73

50
0

15
75

00
73

50
0

66
15

00
P

ho
to

sh
op

S
um

 -
S

ea
ts

5
5

S
um

 -
A

m
t.

(R
s.

)
18

00
00

18
00

00
P

ho
to

sh
op

 S
ui

te
S

um
 -

S
ea

ts
1

1
S

um
 -

A
m

t.
(R

s.
)

50
00

0
50

00
0

S
ev

er
S

um
 -

S
ea

ts
1

1
1

1
4

S
um

 -
A

m
t.

(R
s.

)
36

00
0

36
00

0
36

00
0

36
00

0
14

40
00

XP
 P

ro
fe

ss
io

na
l

S
um

 -
S

ea
ts

10
10

15
15

10
20

20
10

0
S

um
 -

A
m

t.
(R

s.
)

72
00

0
72

00
0

10
80

00
10

80
00

72
00

0
14

40
00

14
40

00
72

00
00

To
ta

l
Se

at
s

40
41

10
7

60
60

52
76

66
50

2
To

ta
l

A
m

t.
(R

s.
)

32
45

00
36

05
00

15
52

00
48

95
00

48
95

00
11

95
50

0
66

90
00

55
30

00
42

36
70

0

Su
m

m
ar

y
of

 c
os

t o
f p

ro
pr

ie
ta

ry
 so

ftw
ar

e
(C

lo
se

d
so

ur
ce

)

62 Linux Thane 2006

63Linux Thane 2006

64 Linux Thane 2006

65Linux Thane 2006

66 Linux Thane 2006

67Linux Thane 2006

68 Linux Thane 2006

69Linux Thane 2006

70 Linux Thane 2006

71Linux Thane 2006

72 Linux Thane 2006

73Linux Thane 2006

Open Source For Library: A Case Study
Priyanka S. Kadam, Yashada V. Naik

S.Y.B.Sc. (I.T.), B. N. Bandodkar College, Science, Thane

Abstract
Information is a term with many meanings depending on the context, knowledge, instruction,
communication, representation and mental stimulus. Information should be sufficient, competent, relevant
and useful. Therefore it has been described as the fifth need of man ranging after air water, food, and
shelter. The main sources of information are books and therefore we maintain Library. A digital library
is the greatest revolution, which extends and enhances the existing information storage and retrieval.
Present paper talks about how Open Source softwares will be useful for creation of digital libraries. If
you’ve ever used the Internet, you’ve used open source software.

Library, in Brief

The main sources of information are books and
therefore we maintain Library. Library is the place
where we find the collection of various types of books
for the purpose of Reading, Studying and for the
reference. According to Dr. S. R. Rangnathan, who
is the father of Library and information science in
India, Library is the public Institution or
establishment charged with the care of a collection
of books and the duty of making them accessible to
those who require use of them. As far as working of
Traditional Library concern user must go to the
Library and search the information, which is time
consuming. Therefore it is hardly necessary to have
a facility to access information where user sited. Thus
need of digital library emerged. A digital library is
the greatest revolution, which extends and enhances
the existing information storage and retrieval. The
purpose of Digital Library is to provide fast, un-
interrupted access to the resources through
INTRANET as well as INTERNET. Digital Library
can be accessed through browsers. Traditional
libraries are limited by storage space but digital
libraries have the potential to store much more
information, simply because digital information
requires very little physical space to contain it. the
cost of maintaining a digital library is much lower
than that of a traditional library. A traditional library
must spend large sums of money paying for staff,
book maintenance, rent, and additional books. Digital
libraries do away with these fees. Multiple users can
access it at a time, and therefore availablity of books
increases. Users can access it round a clock. Using
networking approach we can connect number of
libraries and using this fascility users can refer
different types of books which is not possible in
traditional Libraries, because in traditional Labraries

users or readers can refer only those books which
are present in that particular Library.

Open Source

Open Source Software is a computer software
whose source code is available under a copyright
license that permit users to study, change, and
improve the software, and to redistribute it in
modified or unmodified form.

Open Source Library software enpower users,
particularly in universities, Libraries and other public
service institutions, to build their own digital
libraries. Open source software gives orgnisation
flexible tools for managing and delivering their
digital content. Open Sourse Software is a suite of
software for building and distribuiting digital Library
collections. It provides a new way of orgnizing
information and publishing it on the internet or on
CD-ROM. It encourges the effective deployment of
Digital Libraries to share information and place it in
the public domain.

If you’ve ever used the Internet, you’ve used
open source software. Many of the servers and
applications running on machines throughout the
wired world rely on software created using the open
source process. Example of such software is Apache.

Library Software Today

No software is perfect. There is constant
innovation in library software. For many of us online
catalog systems mean a clunky old text interface that
often is less effective than browsing stacks. Often,
this is due to the obstacles we face in managing legacy
systems; new systems might be vastly improved, but
we are slow to upgrade when we consider the costs
of migrating data, staff retraining, systems support,

74 Linux Thane 2006

and on and on. Sometimes, new versions of systems
we currently use are just not good enough to warrant
making a switch.

This is not surprising. The library community
is largely made up of not-for-profit, publicly funded
agencies, which hardly command a major voice in
today’s high tech information industry. Online
systems are no less about access to information than
having an auto-open front door or an elevator in a
library building.

We read of exciting technological innovations
in library-related systems. Innovations in advanced
user interfaces and metadata-enabled retrieval
environments and other areas have the potential to
make online access more and more seamless and easy
to use.

Libraries might do well to enhance their
services by leveraging community-owned
information systems-which open source seems to
promise.

First, open source systems, when licensed in
the typical “general license” manner, cost nothing
(or next to nothing) to use-whether they have one or
one thousand users. Although the costs of
implementing and supporting the systems on which
software runs might not change, imagine removing
the purchase price of a new search interface (or ILL
tool, or circulation module, etc.) from your budget
for next year. Rather than spending thousands on
systems, such funds might be reallocated for training,
hiring, or support needs, areas where libraries tend
toward chronic shortfalls.

Second, open source product support is not
locked in to a single vendor. The community of
developers for a particular open source product tends
to be a powerful support structure for Linux and other
products because of the pride in ownership described
above. Also, anyone can go into business to provide
support for software for which the very source code
is freely available. Thus even if a library buys an
open source system from one vendor, it might choose
down the road to buy technical support from another
company-or to arrange for technical support from a
third-party at the time of purchase. On top of this
flexibility, any library with technical staff capable
of understanding source0020code might find that its
own staff might provide better internal support
because the staff could have a better understanding
of how the system work.

Third, the entire library community might share
the responsibility of solving information systems
accessibility issues. Few systems vendors make a
profit by focusing their products on serving the needs
of users who cannot operate in the windows/icons/
menus/pointer world. If developers building systems
for the vision impaired and other user groups
requiring alternative access environments were to
cooperate on creating a shared base of user interfaces,
these shared solutions might be freely built into
systems around the world far more rapidly and
successfully than ever before.Beyond merely using
open source products, however, we must create them.
For those of you who realize that someone else might
benefit from what you’ve done-and that you might
benefit from the ability to share in the work of others-
consider thoroughly the implications of releasing
your code under an open source license.

Annexure I

Some Open Source Softwares For Library:

Library software provides libraries throughout
the world with a tool to management the vast amount
of information contained in a broad spectrum of
mediums-from traditional books to microfiche to
electronic media. We have gathered leading library
software solution providers for you to review.

Koha

 Koha is open source software. The librarian
interface is tested only with Mozilla/Firefox.Several
companies around the world support Koha, providing
libraries with a full array of vendor services including
installation, migration assistance, data integrity
testing, staff training, software maintenance, support
and customization. http://
p rdownloads . sourceforge .ne t /koha /koha-
2.2.2.tar.gz?download

Greenstone

is a suite of software for building and
distributing digital library collections. It is not a
digital library but a tool for building digital libraries.
It provides a new way of organizing information and
publishing it on the Internet in the form of a fully
searchable, metadata-driven digital library. It is open-
source, multilingual software, issued under the terms
of the GNU General Public License. The survey
received 62 valid responses from users and
developers who work with Greenstone in at least 32
different countries. www.greenstone.org/cgi-bin/
library

75Linux Thane 2006

Dspace

The DSpace digital repository system captures,
stores, indexes, preserves, and distributes digital
research material. Research institutions worldwide
use DSpace as an institutional repository, a learning
object repository, for records management, and more.
The DSpace open source platform is freely available
so you can customize and extend it to suit your needs.
DSpace runs on any UNIX or LINUX operating
system. http://www.dspace.org/

Fedora

Fedora open source software gives
organizations a flexible service-oriented architecture
for managing and delivering their digital content. At
its core is a powerful digital object model that
supports multiple views of each digital object and
the relationships among digital objects. Digital
objects can encapsulate locally-managed content or
make reference to remote content. Dynamic views
are possible by associating web services with objects.
Digital objects exist within a repository architecture
that supports a variety of management functions. All
functions of Fedora, both at the object and repository
level, are exposed as web services. These functions
can be protected with fine-grained access control

policies.This unique combination of features makes
Fedora an attractive solution in a variety of domains.
Some examples of applications that are built upon
Fedora include library collections management,
multimedia authoring systems, archival repositories,
institutional repositories, and digital libraries for
education.

Libman

Library Manager, as you could understand from
its name, is a library management program. You can
easily take control all of the books under any
circumstance. This could be in a school library or in
a home library that we all have.

References

1) Annals of Library and Information Studies
National Institute of Science Communication
And Information Resources, CSIR

2) www.med.yale.edu/library/oss4lib

www.med.yale.edu/library/oss4lib

oss4lib@biomed.med.yale.edu.

76 Linux Thane 2006

Experimentation of LINUX on VPM Campus
Abhijeet A. Kale1, Dalvir Reel2,

1. Prof. In-charge, Department Of Information Technology, B. N. Bandodkar College Of Science, Thane

2. System Analyst, Department of Information Technology, VPM’s Polytechnic, Thane

Abstract
The goals of education and technology align so closely that we can have profound impact on the way we
think and learn. Technology can help to make the education easier, simpler. By observing the benefits of
computers in education, Vidya Prasarak Mandal (VPM), a premier educational trust in Thane, Maharashtra
started introducing computer education in all illustrious, model institutions run by them. Initially VPM
selected the proprietary softwares because of the helping nature. In September 2004, VPM started
thinking of alternatives came across Linux / Open Source system. Present paper says why VPM is
required to change their platform and how we are switching to Linux.

Computers on VPM Campus

30 58
96

150

270
352

450

0 0 0 0 0
85

212

0

100

200

300

400

500

2000 2001 2002 2003 2004 2005 2006

Year

N
o.

 o
f C

om
pu

te
rs

Computers
Linux

From 2002, VPM started gaining importance
of computers and made computers available for
students. Initially all computers were Windows based.
In 2004, we were spending significant amount for
license per year although it is used for education
purpose. More ever Government / University does
not give any grant for this amount. It’s a heavy burden
on management. VPM started thinking of alternative.
We come across Linux / Open Source and started
working on this platform. We started converting our
systems to Linux / Open Source platform. We are
trying to do day-to-day activities on Linux, although
the progress is slow. Currently Linux is proving more
than up to the task. And in those few places where
Linux appeared to under whelm, we are finding
different ways to accomplish the task.

The institutions run by VPM started playing
major role in making the project success.

B. N. Bandodkar College of Science, one of
the institutions belonging to VPM, played big role
by making one of the IT laboratory consisting of 25
computers and at least one computer in every
department purely Linux based. Out of 110
computers, currently 37 computers are Linux based

and teaching as well as non-teaching staff is working
or learning on it. IT department started conducting
practicals of F.Y.B.Sc., S.Y.B.Sc. on Linux and
students started finding Linux also user friendly like
Windows.

Current percentage of Linux based Computers on VPM Campus
47

216

Linux based
Windows based

VPM’s Polytechnic, another institution of
VPM, converted their one IT laboratory on Linux
OS while two other laboratories dual boot. They are
conducting practicals of T.Y.I.F, T.Y.CO. on Linux
platform.

Vidya Prasarak Mandal, on it’s part, has
deployed Linux based Thin client network with
around 100 thin clinets catering to over 200
stakeholders in our management institute namely V.

77Linux Thane 2006

N. Bedekar Institute of Research and Management,
for day to day use. Though there were some teething
problems, the end users started using it and are in
fact quite happy with the performance, stability and
privacy it provides.

Why not 100 % conversion ratio?

VPM’s institutes are affiliated to University of
Mumbai, M.S.B.T.E., Y.C.M.O.U. The syllabus for
all classes is framed in such way that there is little
chance to work on Linux platform. Windows is
necessity for maximum of the syllabus.

Here’s the approximate process we are using
to transit from a Windows to Linux desktop. Of
course, our mileage may vary:

Ban proprietary upgrades and new proprietary
programs immediately

Segregate your data from your apps and OS

Make a transition plan

Find dead ends in your plan, and find and ways
out of those dead ends

Create a practice setup

Get hardware ready to accept Linux

Install Linux

Do final windows backup

Test to verify a working setup

Do a backup of your Linux data

Back up

Out of 17 different servers on campus for
different purposes, 7 are Linux based while 6 are
dual.

Current percentage of Linux based Servers

4

7

6
Other
Linux
Dual

Linux based Digital Library

Marathi E-books.

Problems we are facing currently:

Drivers, Drivers, Drivers: Linux either is not
able to detect some piece of hardware or is not able
to assign a workable driver to it. Very difficult to
find a Linux driver for the device at hand.

Windows has a standard process for installing
and uninstalling programs. This is a Linux weakness.

Windows offers consistent, easy to understand,
and reliable GUI (graphical user interface) controls
for managing hardware configuration and other
settings—such as boot options, audio, video, and
screen resolution.

Support For The Latest, Greatest
Technologies: Even though Windows users have
tended to grumble about the lack of built-in support
for newer technologies, such as DVD-burning,
Microsoft has done an admirable job of supporting
new technologies over the years. For example,
WinXP supports USB (Universal Serial Bus) 1.x,
USB 2.0, FireWire, CD-RW, and a long list of others.
Linux has not kept pace with this, although some
distros are showing signs of solid improvement.

The major difference between Linux and
Windows is the open-source nature of Linux and
closed-source nature of Windows. The user as he/
she sees fit can modify Linux, as an open-source OS.
Open source really means that anyone can modify
the underlying code, and that no one completely owns
it. Microsoft Windows, on the other hand, is not an
operating system you can modify easily - it was
designed to work a particular way with a certain user
interface as designated by Microsoft software
engineers.

Conclusion:

1. Government / University must be asked to
modify the syllabus in order to make educational
institutions free from License copy overheads.

2. They at least should not insist to work on specific
platform. Freedom should be given to institutions
for there own choice.

Along with Conversion from Windows to
Linux, VPM has also undertaken another two
projects viz.

78 Linux Thane 2006

79Linux Thane 2006

80 Linux Thane 2006

Notes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

